Propagation Constant and Material constants of Metamaterials

Metamaterial의 전파 상수 및 물질 상수

  • Published : 2008.08.25

Abstract

The propagation constant, which is defined for a double-positive (DPS) material of positive permittivity (${\varepsilon}'$) and permeability (${\mu}'$), is extended and derived for an epsilon-negative (ENG) material (${\varepsilon}'<0,\;{\mu}'>0$), a mu-negative (MNG) material (${\varepsilon}'>0,\;{\mu}'<0$), and a double-negative (DNG) material (${\varepsilon}'<0,\;{\mu}'<0$). By investigating how the permittivity loss (${\varepsilon}"$) and permeability loss (${\mu}"$) terms affect the propagation constant, we determine that the wave in the materials propagates as a right-handed (RH) triad or a left-handed (LH) triad. Regardless of the magnitudes of ${\varepsilon}"$ and ${\mu}"$, DPS and DNG materials become RH and LH media, respectively. However, ENG and MNG materials possess unusual characteristics that both materials become a RH medium when the sign of (${\varepsilon}'{\mu}"+{\varepsilon}"{\mu}'$) is positive and they become a LH medium when the sign is negative.

본 논문에서는 유전율($\varepsilon'$)과 투자율($\mu'$)이 양수인 double-positive (DPS) 물질에서 정의된 전파 상수를 epsilon-negative(ENG) 물질 (${\varepsilon}'<0,\;{\mu}'>0$), mu-negative (MNG) 물질 (${\varepsilon}'>0,\;{\mu}'<0$), 그리고 double-negative (DNG) 물질 (${\varepsilon}'<0,\;{\mu}'<0$)으로 확장하여 유도하였다. 이와 함께 유전율 손실(${\varepsilon}"$)과 투자율 손실(${\mu}"$)이 전파 상수에 미치는 영향을 분석하여 이 물질에서 전파가 right-handed (RH) 혹은 left-handed (LH)로 동작하는지를 규명하였다. DPS와 DNG 물질은 ${\varepsilon}"$${\mu}"$의 값에 상관없이 각각 RH 그리고 LH 매질로 동작한다. 반면 ENG와 MNG 물질은 (${\varepsilon}'{\mu}"+{\varepsilon}"{\mu}'$)의 부호가 양수이면 RH, 음수이면 LH 매질로 동작하는 특이한 특성을 가진다.

Keywords

References

  1. V. Veselago, 'The electrodynamics of substances with simultaneously negative values of $\epsilon$ and $\mu$,' Soviet Physics Uspekhi, vol. 10, no. 4, pp. 509-514, Jan. Feb. 1968 https://doi.org/10.1070/PU1968v010n04ABEH003699
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, 'Low frequency plasmons in thin-wire structure,' J. Phs, Condens. Letter, vol. 10, pp. 4785-4809, 1998 https://doi.org/10.1088/0953-8984/10/22/007
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, 'Magnetism from conductors and enhanced nonlinear phenomena,' IEEE Trans, Micr. Theory. Tech., vol. 47, no. 11, pp. 2075-2084, Nov. 1999 https://doi.org/10.1109/22.798002
  4. D. R. Smith, W. J. Padillia, D. C. vier, S. C. Nemat-Nasser, and S. Schultz, 'Composite medium with simultaneously negative permeability and permittivity,' Phys, Rev. Lett., vol. 84, no. 18, pp. 4184-4187, May 2000 https://doi.org/10.1103/PhysRevLett.84.4184
  5. C. Caloz, and T. Itoh, Electromagnetic Metamaterials, Wiley-Interscience, 2006
  6. G. V. Eleftheriades, and K. G. Balmain, Negative-refraction metamaterials: fundamental principle and applications, Johnwiley & Sons Inc., 2005
  7. N. Engheta, and R. W. Ziolkowski, Metamaterials: Physics And Engineering Aspects, John wiley & Sons Inc., 2006
  8. D. M. Pozar, Microwave engineering, second edition, John wiley & Sons Inc., pp. 9, 1997