Mobile WiMAX 시스템에서 미세 주파수 동기화 기법의 성능 분석

Performance Analysis of Fine Frequency Synchronization Scheme in Mobile WiMAX Systems

  • 발행 : 2008.08.31

초록

OFDM (orthogonal frequency division multiplexing) 시스템에서 주파수 동기 오차는 시변 특성으로 인해 시스템 성능 저하를 유발하는 가장 중요한 문제 중의 하나이다. 본 논문에서는 OFDM 기반의 이동 WiMAX 시스템에서 파일럿 심벌 기반의 미세 잔여 주파수 동기 오차 추정기의 성능을 분석한다. FFT 과정 후 수행되는 파일럿 기반의 미세 주파수 동기 오차 추정기의 MSE (mean square error) 성능을 시변 페이딩 채널에서 수식적으로 유도한다. 본 논문에서 유도된 MSE 성능 검증을 위하여 미세 주파수 동기화 기법을 IEEE802.16e 표준의 프레임 구조에 적용하여 모의실험을 수행한다.

Carrier frequency offset (CFO) is one of the most important problems in an orthogonal frequency division multiplexing (OFDM) system, which seriously degrades the performance of the systems due to its time-variant behavior. In this paper, the performance of a pilot-assisted fine CFO estimator in OFDM-based mobile WiMAX systems is analyzed. Analytical closed-form expression of the mean square error (MSE) of the post-FFT based CFO synchronization scheme is reported for time-variant fading channels. Taking into account the frame structure of the IEEE802.16e standard, simulation results are used to verify the theoretical analysis developed in this paper.

키워드

참고문헌

  1. Part 16: Air Interface Fixed Broadband Wireless Access Systems, Amendment 2: Medium Access Control and Additional Physical Layer Specifications for 2-11GHz, IEEE Std. 802.16a, Apr. 2003
  2. T. Pollet, "The BER performance of OFDM systems using nonsynchronized sampling," in Proc. of GLOBCOM'94, pp.253-257, 1994
  3. T. M. Schmidl and D.C. Cox, "Robust frequency and timing synchronization for OFDM," IEEE Trans. Commun., Vol.45, pp.613-1621, Dec. 1997
  4. J. J. Van De Beek, M. Sandel, and P. O. Borjesson, "ML estimation of time and frequency offset in OFDM systems," IEEE Trans. Signal Processing, Vol.45, pp.1800-1805, July 1997 https://doi.org/10.1109/78.599949
  5. T. Pollet, M. van Bladel, and M. Moeneclaey, "BER sensitivity of OFDM systems to carrier frequency offset and wiener phase noise," IEEE Trans. Commun., Vol.43, pp.191-193, Feb./Mar./Apr. 1995 https://doi.org/10.1109/26.380034
  6. J. Liu and J. Li, "Parameter estimation and error reduction for OFDM-based WLANs," IEEE Trans. Mobile Computing, Vol.3, No.2, pp.152-163, Apr./Jun. 2004 https://doi.org/10.1109/TMC.2004.11
  7. K. Nikitopoulos and A. Polydoros, "Compensation schemes for phase noise and residual frequency offset in OFDM systems," in Proc. Globecom 2001, pp.330-333, Nov. 2001
  8. M. Speth, S. A. Fechtel, G. Fock, and H. Meyr, "Optimum receiver design for wireless broad-band systems using OFDM-Part I," IEEE Trans. Commun., Vol.47, pp.1668-1677, Nov. 1999 https://doi.org/10.1109/26.803501
  9. K. Shi, E. Serpedin and P. Ciblat, "Decision-directed fine synchronization for OFDM systems," IEEE Trans. Commun., Vol.53, pp.408-412, Mar. 2005 https://doi.org/10.1109/TCOMM.2005.843463
  10. Zhi Wang and Saman S. Abeysekera, "Performance of correlation-based frequency estimation methods in the presence of multiplicative noise," IEEE Trans. Veh. Technol., Vol.55, No.4, pp.1281-1290, Jul. 2006 https://doi.org/10.1109/TVT.2006.877701
  11. International Telecommunication Union, sekera, "Guidelines for evaluation of radio transmission technologies for IMT-2000," ITU-R M. 1225-97, 1997