센서 네트워크에서 낮은 전달 지연으로 근원지 위치 기밀을 강화하는 라우팅

Routing for Enhancing Source-Location Privacy with Low Delivery Latency in Sensor Networks

  • 차영환 (상지대학교 컴퓨터정보공학부)
  • 발행 : 2008.08.31

초록

센서 네트워크에 있어서 정보 전송 노드인 근원지의 위치를 악의적 추적자로부터 보호하기 위해 길이가 긴 경로를 통해 단일 메시지를 전송하는 라우팅에서는 전달 지연이 길어지는 단점이 있다. 본 논문에서는 전송 메시지가 사전에 주어진 경우, 근원지 위치를 보호하면서 최소 비용의 단일 경로를 이용하여 이들을 목적지로 전달하는 문제는 NP-complete 임을 보인다. 이러한 양 극단의 절충 방안이라 할 수 있는 경로 당 $\omega$개의 메시지들을 전송하도록 하여 근원지의 위치 보호 능력을 높이면서도 전달 지연을 저감시키는 라우팅 프로토콜 GSLP-$\omega$ (GPSR-based Source Location Privacy with crew size $\omega$)를 제안한다. 평가 기준으로는 목적지와의 최단 경로의 홉 수를 기준으로 정규 안전 기간(NSP: Normalized Safety Period)과 정규 전달 지연(NDL; Normalized Delivery Latency)을 고려한다. 평균 차수(degree)가 8인 노드 50,000개로 구성되는 네트워크 토폴로지 100개를 생성하여 측정한 결과 제안된 GSLP-$\omega$는 GSLP-$\omega$의 초기 버전인 GSLP와 기존의 대표적인 근원지 위치 보호 라우팅 프로토콜인 PR-SP(Phantom Routing - Single Path)보다 더 높은 안전 기간을 보였다. 전달 지연에서는 GSLP-$\omega$가 PR-SP보다 높으나 GSLP 보다는 낮은 것으로 나타났다.

Most of routing schemes that protect the source's location from a malicious attacker usually make use of a path of a long length per message for the sake of lengthening the safety period. The biggest problem to such approaches is taking a very long latency in transferring messages to the destination. In this paper we show the problem to find the least-cost single path that is enough to keep the source-location always secure from the attacker, provided that it is used for the delivery of a set of messages given in priori, is NP-complete. Consequently we propose a routing protocol GSLP-w(GPSR-based Source-Location Privacy with crew size co) that is a trade-off between two extreme approaches. The advantage of GSLP-co lies in its enhanced safety period for the source and its lowered delivery latency in messaging. We consider NSP(Normalized Sefety Period) and NDL(Normalized Delivery Latency), measured in terms of the least number of hops to the destination, to achieve tangible interpretation of the results. We ran a simulation to confirm our claim by generating 100 topologies of 50,000 nodes with the average number of neighbors being 8. The results show that GSLP-$\omega$ provides more enhanced NSP compared to other protocols GSLP, an earlier version of GSLP-$\omega$, and PR-SP(Phantom Routing - Single Path), the most notable existing protocol for the source-location privacy, and less NDL than that of GSLP but more than that of PR-SP.

키워드

참고문헌

  1. C. Karlof and D. Wagner, "Secure routing in wireless sensor networks: attacks and countermeasures," Ad Hoc Networks, l(1), pp.293-315, 2003 https://doi.org/10.1016/S1570-8705(03)00008-8
  2. C. Ozturk, Y. Zhang, and W. Trappe, "Source-location privacy in energy-constrained sensor network routing," Proc. of the 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks(SASN'04), pp.88-93, 2004
  3. J. Deng, R. Han, and S. Mishra, "Countermeasures against traffic analysis attacks in wireless sensor networks," Proc. of the 1st International Conference on Security and Privacy for Emerging Areas in Communications Networks, pp.113-126, 2005
  4. P. Kamat, Y. Zhang, W. Trappe, and C. Ozturk, "Enhancing source-location privacy in sensor network routing," Proc. of the 25th IEEE International Conference on Distributed Computing Systems(ICDCS'05), pp.599-608, 2005
  5. P. Kamat, W. Xu, W. Trappe, and Y. Zhang, "Temporal Privacy in Wireless Sensor Networks," Proc. of the 27th IEEE International Conference on Distribute Computing Systems(ICDCS'07), pp.23, 2007
  6. B. Hoh and M. Gruteser, "Protecting location privacy through path confusion," Proc. of the 1st International Conference on Security and Privacy for Emerging Areas in Communications Networks, pp.194-205, 2005
  7. L. Zhang, "A self-adjusting directed random walk approach for enhancing source-location privacy in sensor network routing," Proc. of the ACM International Wireless Communication and Mobile Computing Conference(IWCMC'06), pp.33-38, 2006
  8. Y. Jian, S. Chen, Z. Zhang, L. Zhang, "Protecting receiver-location privacy in wireless sensor networks," Proc. of the 26th IEEE Conference on Computer Communications(INFOCOM'07), pp.1955-1963, 2007
  9. Y. Ouyang, Z. Le, G. Chen, and J. Ford, "Entrapping adversaries for source protection in sensor networks," Proc. of the 7th IEEE International Symposium on a Word of Wireless, Mobile and Multimedia Networks(WoWMoM'06), pp.23-32, 2006
  10. K. Mehta, D. Lie, and M. Wright, "Location privacy in sensor networks against a global eavesdropper," Proc. of the 15th IEEE International Conference on Network Protocols(INCP'07), 2007(Session VIII, #4)
  11. 휴면 소오스들이 존재하는 환경에서의 센서 네트워크를 위한 위치 보호 강화 라우팅(심사 중), 2008
  12. B. Karp and H.-T. Kung, "Greedy Perimeter Stateless Routing for Wireless Networks," Proc. of the 6th Annual ACM/IEEE International Conference on Mobile Computing and Networking(MobiCom'00), pp. 243-254, 2000
  13. H. Frey and I. Stojmenovic, "On delivery guarantees of face and combined greedy-face routing in ad hoc and sensor networks," Proc. of the 12th Annual ACM/IEEE International Conference on Mobile Computing and Networking(MobiCom'06), pp.390-401, 2006
  14. N. Ahmed, S. Kanhere, and S. Jha, "The hole problem in wireless sensor networks: a survey," ACM SIGMOBILE Mobile Computing and Communications Review, Vol.9, No.2, 2005, pp.4-18
  15. Y.-B. Ko, and N. Vaidya, "Geocasting in mobile ad hoc networks: location-based multicast algorithms," Proc. of 2nd IEEE Workshop on Mobile Computing Systems and Applications(WMCSA99), 1999, pp. 101-110
  16. N. Kimura and S. Latifi, "A survey on data compression in wireless sensor networks," Proc. of the International Conference of Information Technology: Coding and Computing(ITCC'05), Vol.2, pp.8-13, 2005
  17. M. Garey and D. Johnson, Computer and Intractability: a guide to the theory of NP-completeness, W.H. Freeman and Company, San Francisco, 1979