DOI QR코드

DOI QR Code

Toxicity Screening of Single Dose of Inorganic and Organic Arsenics on Hematological and Serum Biochemical Parameters in Male Cynomolgus Monkeys

  • Kim, Choong-Yong (Korea Institute of Toxicology, KRICT) ;
  • Han, Kang-Hyun (Korea Institute of Toxicology, KRICT) ;
  • Heo, Jeong-Doo (Korea Institute of Toxicology, KRICT) ;
  • Han, Eui-Sik (National Institute of Toxicological Research) ;
  • Yum, Young-Na (National Institute of Toxicological Research) ;
  • Lee, Jin-Young (National Institute of Toxicological Research) ;
  • Park, Kyung-Su (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Im, Ruth (Dept. Preventive Medicine, College of Medicine, Chung-Ang University) ;
  • Choi, Seong-Jin (Dept. Preventive Medicine, College of Medicine, Chung-Ang University) ;
  • Park, Jung-Duck (Dept. Preventive Medicine, College of Medicine, Chung-Ang University)
  • 발행 : 2008.09.01

초록

A screening study of the acute toxicity of organic arsenics such as arsenobetaine and arsenocholine, a product of arsenic methylation metabolite, and inorganic arsenic was carried out to examine hematological and serum biochemical parameters in cynomolgus monkeys(Macaca fascicularis). We found soft and liquid feces, and vomiting in all treated groups with inorganic and organic arsenics. The monkeys in inorganic arsenic-treated group showed a significant increase in vomiting frequency compared with those in three organic arsenics-treated groups. These results suggest that inorganic arsenic might be more toxic than three other organic arsenics tested. The monkeys in inorganic arsenic-treated group showed a decrease in platelet and an increase in monocyte on day 4 and the monkeys in arsenocholine-treated group showed an increase in reticulocyte percentage on day 8. The monkeys in inorganic-treated group also showed decreases in AST and ALT values and the monkeys in arsenobetaine-treated group showed a decrease in AST value and an increase in T-CHO value. However, these hematological and biochemical changes were within the physiological ranges, showing that the single dose of inorganic and organic arsenics did not affect at least hematological and serum biochemical parameters. The present study of toxicity with single dose of arsenics provides valuable indicators for longer term study of toxicity of repeated doses of arsenics in primates.

키워드

참고문헌

  1. Bertolero, F., Marafante, E., Edel, R.J., Pietra, R. and Sabbioni, E. (1981). Biotransformation and intracellular binding of arsenic in tissues of rabbit after intraperitioneal administration of $^{74}As$ labeled arsenite. Toxicology, 20, 35-44 https://doi.org/10.1016/0300-483X(81)90103-7
  2. Buchet, J.P., Lauwerys, R. and Roels, H. (1981). Comparison of urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite, monomethylarsonate, or dimethylarsinate in man. Int. Arch. Occup. Environ. Health, 48, 71-79 https://doi.org/10.1007/BF00405933
  3. Brown, J.L., Kitchin, K.T. and George, M. (1997). Dimethylarsinic acid treatment alters six different rat biochemical parameters: relevance to arsenic carcinogenesis. Terato- genesis Carcinog. Mutagen, 17, 71-84 https://doi.org/10.1002/(SICI)1520-6866(1997)17:2<71::AID-TCM3>3.0.CO;2-B
  4. Charbonneau, S.M., Tam, G.K.H., Bryce, F., Zawidzka, Z. and Sandi, E. (1979). Metabolism of orally administered inorganic arsenic in the dog. Toxicol. Lett., 3,107-113 https://doi.org/10.1016/0378-4274(79)90094-8
  5. Crecelius, E.A. (1977). Changes in the chemical speciation of arsenic following ingestion by man. Environ. Health Perspect., 19,147-150 https://doi.org/10.2307/3428467
  6. Gad, S.C. and Chengelis, C.P. (1998). Acute toxicology testing (2nd edition), Academic Press, pp. 320-330
  7. Guha Mazumder, D.N., Haque, R., Ghosh, N., De, B.K., Santra, A., Chakraborty, D. and Amith, A.H. (1998). Arsenin levels in drinking water and the prevalence of skin lesions in West Bengal, India. Int. J. Epidemiol., 27, 871-877 https://doi.org/10.1093/ije/27.5.871
  8. Hughes, M.F. and Kenyon, E.M. (1998). Dose-dependent effects on the disposition of monomethylarsonic acid and dimethylarsinic acid in the mouse after intravenous administration. J. Toxicol. Environ. Health, 53, 95-112 https://doi.org/10.1080/009841098159385
  9. Kim, C.Y., Lee, H.S., Han, S.C., Heo, J.D., Kwon, M.S., Ha, C.S. and Han, S.S. (2005). Hematological and serum biochemical values in cynomolgus monkeys anesthetized with ketamine hydrochloride. J. Med. Primatol., 34, 96-1000 https://doi.org/10.1111/j.1600-0684.2005.00097.x
  10. Kreppel, H., Bauman, J., Liu, J., McKim, J.M. Jr. and Klaassen, C.D. (1993). Induction of metallothionein by arsenicals in mice. Fundam. Appl. Toxicol., 20, 184-189 https://doi.org/10.1006/faat.1993.1025
  11. Li, W., Wanibuchi, H., Salim, E.I., Yamamoto, S., Yoshida, K., Endo, G. and Fukushima, S. (1998). Promotion of NCIBlack- Reiter male rat bladder carcinogenesis by dimethylarsinic acid an organic arsenic compound. Cancer Lett., 134, 29-36 https://doi.org/10.1016/S0304-3835(98)00237-7
  12. Lin, S., Cullen, W.R. and Thomas, D.J. (1999). Methylasenicals and arsinothiols are potent inhibitors of mouse liver thioredoxin reductase. Chem. Res. Toxicol., 12, 924-930 https://doi.org/10.1021/tx9900775
  13. Mandal, B.K. and Suzuki, K.T. (2002). Arsenic round the world: a review, Talanta, 58, 201-235 https://doi.org/10.1016/S0039-9140(02)00268-0
  14. Moore, M.M., Harrington-Brock, K. and Doerr, C.L. (1997). Relative genotoxic potency of arsenic and its methylated metabolites. Mutat. Res., 386, 279-290 https://doi.org/10.1016/S1383-5742(97)00003-3
  15. Oya-Ohta, Y., Kaise, T. and Ochi, T. (1996). Induction of chromosomal aberrations in cultured human fibroblasts by inorganic and organic arsenic compounds and the different roles of glutathione in such induction. Mutat. Res., 357, 123-129
  16. Rasmussen, R.E. and Menzel, D.B. (1997). Variation in arsenic-induced sister chromatid exchange in human lymphocytes and lymphoblastoid cell lines. Mutat. Res., 386, 299-306 https://doi.org/10.1016/S1383-5742(97)00010-0
  17. Sakurai, T. (2002). Biological effects of organic arsenic compounds in seafood. Appl. Organomet. Chem., 16, 401-405 https://doi.org/10.1002/aoc.325
  18. Sakurai, T., Kaise, T. and Matsubara, C. (1998). Inorganic and methylated arsenic compounds induce cell death in murine macrophages via different mechanisms. Chem. Res. Toxicol., 11, 273-283 https://doi.org/10.1021/tx9701384
  19. Styblo, M. and Thomas, D.J. (1997). Binding of arsenicals to proteins in an in vitro methylation system. Toxicol. Appl. Pharmacol., 147, 1-8 https://doi.org/10.1006/taap.1997.8256
  20. Styblo, M., Serves, S.V., Cullen, W.R. and Thomas, D.J. (1997). Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem. Res. Toxicol., 10, 27-33 https://doi.org/10.1021/tx960139g
  21. Tam, G.K.H., Charbonneau, S.M., Bryce, F., Pomroy, C. and Sandi, E. (1979). Metabolism of inorganic arsenic ($^{74}As$) in humans following oral ingestion. Toxicol. Appl. Pharmacol., 50, 319-322 https://doi.org/10.1016/0041-008X(79)90157-1
  22. Uede, K. and Furukawa, F. (2003). Clinical and laboratory investigations skin manifestations in acute arsenic poisoning from the Wakayama curry-poinsoning incident. Br. J. Dermatol., 149, 757-762 https://doi.org/10.1046/j.1365-2133.2003.05511.x
  23. Vahter, M. (2000). Genetic polymorphism in the biotransformation of inorganic arsenic and its role in toxicity. Toxicol. Lett., 112-113, 209-217 https://doi.org/10.1016/S0378-4274(99)00271-4
  24. Vahter, M. (1999). Methylation of inorganic arsenic in different mammalian species and population groups. Sci. Prog., 82, 69-88
  25. Vahter, M. (1994). Species differences in the metabolism of arsenic compounds. Appl. Organomet. Chem., 8, 175-182 https://doi.org/10.1002/aoc.590080304
  26. Vahter, M., Marafante, E. and Dencker, L. (1984). Tissue distribution and retention of $^{74}As$-dimethylarsinic acid in mice and rats. Arch. Environ. Contam. Toxicol., 13, 259-264 https://doi.org/10.1007/BF01055275
  27. Vahter, M., Marafante, E., Lindgren, A. and Dencker, L. (1982). Tissue distribution and subcellular binding of arsenic in marmoset monkeys after injection of $^{74}As$-arsenite. Arch. Toxicol., 51, 65-77 https://doi.org/10.1007/BF00279322
  28. Vahter, M. (1981). Biotransformation of trivalent and pentavalent inorganic arsenic in mice and rats. Environ. Res., 25, 286-293 https://doi.org/10.1016/0013-9351(81)90030-X
  29. Vega, L., Styblo, M., Patterson, R., Cullen, W., Wang, C. and Germolec, D. (2001). Differential effects of trivalent and pentavalent arsenicals on cell proliferation and cytokine secretion in normal human epidermal keratinocytes. Toxicol. Appl. Pharmacol., 172, 225-232 https://doi.org/10.1006/taap.2001.9152
  30. Wildfang, E., Radabaugh, T.R. and Aposhian, H.V. (2001). Enzymatic methylation of arsenic compounds. IX. Liver arsenite methyltransferase and arsenate reductase activities in primates. Toxicology, 168, 213-221 https://doi.org/10.1016/S0300-483X(01)00481-4
  31. Yamanaka, K., Hasegawa, A., Sawamura, R. and Okada, S. (1989). DNA strand breaks in mammalian tissues induced by methylarsenics. Biol. Trace Elem. Res., 21, 413-417 https://doi.org/10.1007/BF02917283