DOI QR코드

DOI QR Code

Reproductive Toxicity Evaluation of Pestban Insecticide Exposure in Male and Female Rats

  • Morgan, Ashraf M. (Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University) ;
  • El-Aty, A.M. Abd (Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University)
  • Published : 2008.06.01

Abstract

Sexually mature male and female rats were orally intubated with the organophosphorus insecticide, Pestban at a daily dosage of 7.45 or 3.72 mg/kg bwt, equivalent to 1/20 and 1/40 $LD_{50}$, respectively. Male rats were exposed for 70 days, while the female rats were exposed for 14 days, premating, during mating and throughout the whole length of gestation and lactation periods till weaning. The results showed depressed acetylcholinesterase(AChE) activity in the brain of parents, fetuses and their placentae in a dose-dependent manner. The fertility was significantly reduced with increasing the dose in both treated groups, with more pronounced suppressive effects in the male treated group. The number of implantation sites and viable fetuses were significantly reduced in pregnant females of both treated groups. However, the number of resorptions, dead fetuses, and pre-and postimplantation losses were significantly increased. The incidence of resorptions was more pronounced in treated female compared to male group and was dose dependant. The behavioral responses as well as fetal survival and viability indices were altered in both treated groups during the lactation period. The incidence of these effects was more pronounced in the treated female group and occurred in a dose-related manner. The recorded morphological, visceral, and skeletal anomalies were significantly increased with increasing the dose in fetuses of both treated groups, with more pronounced effects on fetuses of treated females. In conclusion, the exposure of adult male and female rats to Pestban would cause adverse effects on fertility and reproduction.

Keywords

References

  1. Abou-Donia, M.B. (1985). Biochemical Toxicity of Organophosphorus Compounds. In Neurotoxicology (K. Blum and L. Manzo, Eds.), Dekker, New York
  2. Akhtar, N., Srivastava, M.K. and Raizada, R.B. (2006). Transplacental disposition and teratogenic effects of chlorpyrifos in rats. J. Toxicol. Sci., 31, 521-527 https://doi.org/10.2131/jts.31.521
  3. Andersen, H.R., Vinggaard, A.M., Rasmussen, T.H., Gjermandsen, I.M. and Bonefeld-Jorgensen, E.C. (2002). Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicol. Appl. Pharmacol., 179, 1-12 https://doi.org/10.1006/taap.2001.9347
  4. Astroff, A.B., Freshwater, K.J. and Eigenberg, D.A. (1998). Comparative organophosphate-induced effects observed in adult and neonatal Sprague-Dawley rats during the conduct of multigeneration toxicity studies. Reprod. Toxicol., 12, 619-645 https://doi.org/10.1016/S0890-6238(98)00044-6
  5. Bansal, N., Pawar, H.S. and Roy, K.S. (1994). Pathology of urogenital organs in chlorpyrifos toxicity in rabbits. Indian J. Vet. Pathol., 18, 34-37
  6. Bedford, C.T. and Robinson, J. (1972). The alkylating properties of organophosphates. Xenobiotica, 2, 307-337 https://doi.org/10.3109/00498257209111060
  7. Betancourt, A.M., Filipov, N.M. and Carr, R.L. (2007). Alteration of neurotrophins in the hippocampus and cerebral cortex of young rats exposed to chlorpyrifos and methyl parathion. Toxicol. Sci., 100, 445-455 https://doi.org/10.1093/toxsci/kfm248
  8. Blasiak, J., Jaloszynski, P., Trzeciak, A. and Szyfter, K. (1999). In vitro studies on the genotoxicity of the organophosphorus insecticide malathion and its two analogues. Mutat Res., 445, 275-283 https://doi.org/10.1016/S1383-5718(99)00132-1
  9. Buznikov, G.A., Nikitina, L.A., Bezuglov, V.V., Lauder, M., Padilla, S. and Slotkin, T.A. (2001). An invertebrate model of the developmental neurotoxicity of insecticides: effects of chlorpyrifos and dieldrin in sea urchin embryos and larvae. Environ. Health Perspect., 109, 651-661 https://doi.org/10.2307/3454780
  10. Carleton, B.D., Hasaran, A.H., Mezza, L.E. and Smith, M.K. (1987). Examination of the reproductive effects of tricresyl phosphate administered to Long Evans rats. Toxicology, 46, 321-328 https://doi.org/10.1016/0300-483X(87)90212-5
  11. Chakraborty, J. and Nelson, L. (1976). Comparative study of cholinesterase distribution in the spermatozoa of some mammalian species. Biol. Reprod., 15, 579-585 https://doi.org/10.1093/biolreprod/15.5.579
  12. Chanda, S.M., Harp, P., Liu, J. and Pope, C.N. (1995). Comparative developmental and maternal neurotoxicity following acute gestational exposure to chlorpyrifos in rats. J. Toxicol. Environ. Health, 44, 189-202 https://doi.org/10.1080/15287399509531954
  13. Chapin, R.E., George, J.D. and Lamb, J.C. 4th (1988). Reproductive toxicity of tricresyl phosphate in a continuous breeding protocol in Swiss (CD-1) mice. Fundam. Appl. Toxicol., 10, 344-354 https://doi.org/10.1016/0272-0590(88)90320-X
  14. Cho, N.H. and Park, C. (1994). Effects of dimethyl methylphosphonate (DMMP) and trimethylphosphate (TMP) on spermatogenesis of rat testis. Yonsei Med. J., 35, 198-208 https://doi.org/10.3349/ymj.1994.35.2.198
  15. Clemens, G.R., Hartnagel, R.E., Bare, J.J. and Thyssen, J.H. (1990). Teratological, neurochemical, and postnatal neurobehavioral assessment of METASYSTOX-R, an organophosphate pesticide in the rat. Fundam. Appl. Toxicol., 14, 131-143 https://doi.org/10.1016/0272-0590(90)90239-G
  16. Crumpton, T.L., Seidler, F.J. and Slotkin, T.A. (2000). Developmental neurotoxicity of chlorpyrifos in vivo and in vitro: effects on nuclear transcription factors involved in cell replication and differentiation. Brain Res., 857, 87-98 https://doi.org/10.1016/S0006-8993(99)02357-4
  17. Dabrowski, S., Hanke, W., Polanska, K., Makowiec-Dabrowska, T. and Sobala, W. (2003). Pesticide exposure and birthweight: an epidemiological study in Central Poland. Int. J. Occup. Med. Environ. Health, 16, 31-39
  18. Dam, K., Seidler, F.J. and Slotkin, T.A. (1998). Developmental neurotoxicity of chlorpyrifos: delayed targeting of DNA synthesis after repeated administration. Brain. Res. Dev. Brain. Res., 108, 39-45 https://doi.org/10.1016/S0165-3806(98)00028-5
  19. Debnath, D. and Mandal, T.K. (2000). Study of quinalphos (an environmental oestrogenic insecticide) formulation (Ekalux 25 E.C.)-induced damage of the testicular tissues and antioxidant defence systems in Sprague-Dawley albino rats. J. Appl. Toxicol., 20, 197-204 https://doi.org/10.1002/(SICI)1099-1263(200005/06)20:3<197::AID-JAT634>3.0.CO;2-7
  20. El Nahas, S.M., de Hondt, H.A. and Abdou, H.E. (1989). Chromosome aberrations in spermatogonia and sperm abnormalities in Curacron-treated mice. Mutat. Res., 222, 409-414 https://doi.org/10.1016/0165-1218(89)90116-X
  21. Eskenazi, B., Bradman, A. and Castorina, R. (1999). Exposures of children to organophosphate pesticides and their potential adverse health effects. Environ. Health Perspect., 107, 409-419 https://doi.org/10.1289/ehp.99107s3409
  22. Eskenazi, B., Harley, K., Bradman, A., Weltzien, E., Jewell, N.P., Barr, D.B., Furlong, C.E. and Holland, N.T. (2004). Association of in utero organophosphate pesticide exposure and fetal growth and length of gestation in an agricultural population. Environ. Health Perspect., 112, 1116- 1124 https://doi.org/10.1289/ehp.6789
  23. Farag, A.T., El Okazy, A.M. and El-Aswed, A.F. (2003). Developmental toxicity study of chlorpyrifos in rats. Reprod. Toxicol., 17, 203-208 https://doi.org/10.1016/S0890-6238(02)00121-1
  24. Farag, A.T., Karkour, T.A. and El Okazy, A. (2006). Developmental toxicity of orally administered technical dimethoate in rats. Birth Defects Res. B Dev. Reprod. Toxicol., 77, 40-46 https://doi.org/10.1002/bdrb.20066
  25. Faulk, W.P. (1981). Trophoblast and extraembryonic membranes in the immunobiology of human pregnancy. In: (R.K. Miller and H.A. Thiede, Eds.), Placenta: Receptors, Pathology and Toxicology; WB Sanders, London, pp. 3- 22
  26. Fish, S.A. (1966). Organophosphorus cholinesterase inhibitor and fetal development. Amer. J. Obest. Gynaecol., 96, 1148-1154 https://doi.org/10.1016/0002-9378(66)90526-6
  27. Fox, R.P. and Laird, C.W. (1970). Sexual cycles. In: Reproduction and breeding techniques for laboratory animals. (E.S.E. Hafez, Ed.), Lea and Febiger, Philadelphia, Penn, pp. 107-122
  28. Garey, J. and Wolff, M.S. (1998). Estrogenic and antiprogestagenic activities of pyrethroid insecticides. Biochem. Biophys. Res. Commun., 251, 855-859 https://doi.org/10.1006/bbrc.1998.9569
  29. Gibson, J.E., Peterson, R.K. and Shurdut, B.A. (1998). Human exposure and risk from indoor use of chlorpyrifos. Environ. Health Perspect., 106, 303-306 https://doi.org/10.2307/3434034
  30. Gupta, A., Gupta, A. and Shukla, G.S. (1998). Effects of neonatal quinalphos exposure and subsequent withdrawal on free radical generation and antioxidative defenses in developing rat brain. J. Appl. Toxicol., 18, 71-77 https://doi.org/10.1002/(SICI)1099-1263(199801/02)18:1<71::AID-JAT482>3.0.CO;2-B
  31. Harbison, R.D., Dwivedi, C. and Evans, M.A. (1976). A proposed mechanism for trimethylphosphate-induced sterility. Appl. Pharmacol., 35, 481-490 https://doi.org/10.1016/0041-008X(76)90071-5
  32. Harte, J., Holdren, C., Schneider, R. and Shirley, C. (1991). Toxics A to Z: A guide to every day pollution hazards. University of California press. Barkeley, Loss angeles, Oxford
  33. Hass, P.J., Buck, W.P., Hixon, J.E., Shanks, R.D., Wagner, W.C., Weston, P.G. and Whitmore, H.L. (1983). Effect of chlorpyrifos on Holestein steers and testosterone - treated bulls. Am. J. Vet. Res., 44, 879-881
  34. Hodgson, E. abd Rose, R.L. (2006). Organophosphorus chemicals: potent inhibitors of the human metabolism of steroid hormones and xenobiotics.1 Drug Metab. Rev., 38, 149-162 https://doi.org/10.1080/03602530600569984
  35. Ho, M. and Gibson, M.A. (1972). A histochemical study of the developing tibiotarsus in malathion treated chick embryos. Can. J. Zool., 5, 1293-1298
  36. Institoris, L., Siroki, O. and Desi, I. (1995). Immunotoxicity study of repeated small doses of dimethoate and methylparathion administered to rats over three generations. Hum. Exp. Toxicol., 14, 879-883 https://doi.org/10.1177/096032719501401104
  37. Johnson, C.D. and Russell, R.L. (1975). A rapid, simple radiometric assay for cholinesterase, suitable for multiple determinations. Anal. Biochem., 64, 229-238 https://doi.org/10.1016/0003-2697(75)90423-6
  38. Kamijima, M., Hibi, H., Gotoh, M., Taki, K., Saito, I., Wang, H., Itohara, S., Yamada, T., Ichihara, G., Shibata, E., Nakajima, T. and Takeuchi, Y. (2004). A survey of semen indices in insecticide sprayers. J. Occup. Health, 46, 109-118 https://doi.org/10.1539/joh.46.109
  39. Kanojia, R.K., Junaid, M. and Murthy, R.C. (1996). Chromium induced teratogenicity in female rat. Toxicol. Lett., 89, 207-213 https://doi.org/10.1016/S0378-4274(96)03812-X
  40. Karalliedde, L., Feldman, S., Henry, J. and Marrs, T. (2001). Organophosphates and Health. River Edge, NJ: World Scientific Publishing
  41. Kitamura, S., Suzuki, T., Ohta, S. and Fujimoto, N. (2003). Antiandrogenic activity and metabolism of the organophosphorus pesticide fenthion and related compounds. Environ. Health Perspect., 111, 503-508 https://doi.org/10.1289/ehp.5917
  42. Kojima, H., Katsura, E., Takeuchi, S., Niiyama, K. and Kobayashiv, K. (2004). Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells. Environ. Health Perspect., 112, 524-531
  43. Kristensen, P., Irgens, L.M., Andersen, A., Bye, A.S. and Sundheim, L. (1997). Gestational age, birth weight, and perinatal death among births to Norwegian farmers, 1967-1991. Am. J. Epidemiol., 146, 329-338 https://doi.org/10.1093/oxfordjournals.aje.a009274
  44. Lassiter, T.L., Padilla, S., Mortensen, S.R., Chanda, S.M., Moser, V.C. and Barone, S. Jr. (1998). Gestational exposure to chlorpyrifos: apparent protection of the fetus? Toxicol. Appl. Pharmacol., 152, 56-65 https://doi.org/10.1006/taap.1998.8514
  45. Layer, P.G. and Willobold, E. (1995). Novel functions of cholinesterases in development, physiology, and disease. Prog. Histochem. Cytochem., 29, 1-94
  46. Leone, V.G. (1977). Comparative aspects of developmental stages in mammals used for teratogenic tests. In: Methods in Prenatal Toxicology, Neubert D, Merker HJ, Kwasigroch (Eds.). George Thieme Publishers Stuttgart, pp. 14-24
  47. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem., 193, 265-275
  48. Lozano, A.M.A., Manzanilla, C.M., Alvarez, L.R. and Reyes, R.E. (1989). Mutagenic and teratogenic effects of diazinon. Revista International Decontamination Ambiental, 5, 49-249
  49. Mahadevaswami, M.P. and Kaliwal, B.B. (2003). Evaluation of dimethoate-induced implantation delay and nidation by progesterone in albino mice. J. Basic Clin. Physiol. Pharmacol., 14, 43-54
  50. Manson, J.M. and Kang, Y.J. (1989). Test methods for assessment of female reproductive and developmental toxicology. In: Principles and Methods of Toxicology, Hayes AW. Raven Press; New York, pp. 311-361
  51. Nafstad, I., Berge, G., Sannes, E. and Lyngest, A. (1983). Teratogenic effects of the organophosphorus compound fenchlorphos in rabbits. Acta Vet. Scand., 24, 295-304
  52. Narayana, K., Prashanthi, N., Nayanatara, A., Kumar, H.H., Abhilash, K. and Bairy, K.L. (2006). Neonatal methyl parathion exposure affects the growth and functions of the male reproductive system in the adult rat. Folia Morphol. (Warsz), 65, 26-33
  53. Nehez, M. and Desi, I. (1996). The effect of dimethoate on bone marrow cell chromosomes of rats in subchronic four-generation experiments. Ecotoxicol. Environ. Saf., 33, 103-109 https://doi.org/10.1006/eesa.1996.0013
  54. Norusis, M. (1994). Statistical package for social sciences, version 6. USA: SPSS Incorporation
  55. Okamura, A., Kamijima, M., Shibata, E., Ohtani, K., Takagi, K., Ueyama, J., Watanabe, Y., Omura, M., Wang, H., Ichihara, G., Kondo, T. and Nakajima, T. (2005). A comprehensive evaluation of the testicular toxicity of dichlorvos in Wistar rats. Toxicology, 213, 129-137 https://doi.org/10.1016/j.tox.2005.05.015
  56. Papka, R.E., Traurig, H.H., Schemann, M., Collins, J., Copelin, T. and Wilson, K. (1999). Cholinergic neurons of the pelvic autonomic ganglia and uterus of the female rat: distribution of axons and presence of muscarinic receptors. Cell Tissue Res., 296, 293-305 https://doi.org/10.1007/s004410051290
  57. Piramanayagam, S., Manohar, B.M. and Sundararaj, A. (1996). Pathology of malathion toxicity in rats. Indian Vet. J., 73, 734-737
  58. Raines, K.W., Seidler, F.J. and Slotkin, T.A. (2001). Alterations in serotonin transporter expression in brain regions of rats exposed neonatally to chlorpyrifos. Brain Res. Dev. Brain Res., 130, 65-72 https://doi.org/10.1016/S0165-3806(01)00211-5
  59. Ray, A., Chatterjee, S., Ghosh, S., Kabir, S.N., Pakrashi, A. and Deb, C. (1991). Suppressive effect of quinalphos on the activity of accessory sex glands and plasma concentrations of gonadotrophins and testosterone in rats. Arch. Environ. Contam. Toxicol., 21, 383-387 https://doi.org/10.1007/BF01060360
  60. Ray, A., Chatterjee, S., Ghosh, S., Bhattacharya, K., Pakrashi, A. and Deb, C. (1992). Quinalphos-induced suppression of spermatogenesis, plasma gonadotrophins, testicular testosterone production, and secretion in adult rats. Environ. Res., 57, 181-189 https://doi.org/10.1016/S0013-9351(05)80078-7
  61. Richardson, J.R. and Chambers, J.E. (2004). Neurochemical effects of repeated gestational exposure to chlorpyrifos in developing rats. Toxicol. Sci., 77, 83-90
  62. Richardson, J.R. and Chambers, J.E. (2005). Effects of repeated oral postnatal exposure to chlorpyrifos on cholinergic neurochemistry in developing rats. Toxicol. Sci., 84, 352-359 https://doi.org/10.1093/toxsci/kfi081
  63. Sanchez-Pena, L.C., Reyes, B.E., Lopez-Carrillo, L., Recio, R., Moran-Martinez, J., Cebrian, M.E. and Quintanilla-Vega, B. (2004). Organophosphorous pesticide exposure alters sperm chromatin structure in Mexican agricultural workers. Toxicol. Appl. Pharmacol., 196, 108-113 https://doi.org/10.1016/j.taap.2003.11.023
  64. Schoental, R. (1977). Depletion of coenzymes at the site of rapidly growing tissues due to alkylation: The biochemical bases of teratogenic effects of alkylating agents, including organophosphorus and certain other compounds. Biochem. Soc. Trans., 5, 1016 https://doi.org/10.1042/bst0051016
  65. Silva, A.P., Meotti, F.C., Santos, A.R. and Farina, M. (2006). Lactational exposure to malathion inhibits brain acetylcholinesterase in mice. Neurotoxicology, 27, 1101- 1105 https://doi.org/10.1016/j.neuro.2006.04.002
  66. Slotkin, T.A. (1999). Developmental cholinotoxicants: Nicotine and chlorpyrifos. Environ. Health Perspect., 107, 71-80 https://doi.org/10.2307/3434474
  67. Small, H., Michaelson, S. and Sberna, G. (1996). Non-classical actions of cholinesterases: role in cellular differentiation, tumorigenesis, and Alzheimer's disease. Neurochem. Int., 28, 453-483 https://doi.org/10.1016/0197-0186(95)00099-2
  68. Somkuti, S.G., Lapadula, D.M., Chapin, R.E. and Abou-Donia, M.B. (1991). Light and electron microscopic evidence of tri-o-cresyl phosphate (TOCP) mediated testicular toxicity in Fischer 344 rats. Toxicol. Appl. Pharmacol., 107, 35-46 https://doi.org/10.1016/0041-008X(91)90328-C
  69. Soni, I. and Bhatngar, P. (1989). Embryotoxic and teratogenic studies of phosphamidon in Swiss albino mice. Teratog. Carcinog. Mutagen., 9, 253-257 https://doi.org/10.1002/tcm.1770090407
  70. Srivastava, M.K., Raizada, R.B. and Dikshith, T.S. (1992). Fetotoxic response of technical quinalphos in rats. Vet. Hum. Toxicol., 34, 131-133
  71. Srivastava, M.K. and Raizada, R.B. (1996). Development effect of technical dimethoate in rats: maternal and fetal toxicity evaluation. Indian J. Exp. Biol., 34, 329-333
  72. Tomura, A., Goto, K., Morinaga, H., Nomura, M., Okabe, T., Yanase, T., Takayanagi, R. and Nawata, H. (2001). The subnuclear three-dimensional image analysis of androgen receptor fused to green fluorescence protein. J. Biol. Chem., 276, 28395-28401 https://doi.org/10.1074/jbc.M101755200
  73. Weber, M. (1990). The effect of dimethoate and vibration on fetal development in the rat. Anat. Anz., 170, 221-226
  74. Wenda-Rozewicka, L. (1984). Morphometric studies of male gonads from mice receiving insecticides (Metox-30; Sadafos- 30 and Foschhlor-50). Folia Biol. (Krakow), 32, 23-34
  75. Whyatt, R.M., Camann, D.E., Kinney, P.L., Reyes, A., Ramirez, J., Dietrich, J., Diaz, D., Holmes, D. and Perera, F.D. (2002). Residential pesticide use during pregnancy among a cohort of urban minority women. Environ. Health Perspect., 110, 507-514 https://doi.org/10.1289/ehp.02110507
  76. Willis, W.O., de Peyster, A., Molgaard, C.A., Walker, C. and MacKendrick, T. (1993). Pregnancy outcome among women exposed to pesticides through work or residence in an agricultural area. J. Occup. Med., 35, 943-949 https://doi.org/10.1097/00043764-199309000-00019
  77. Wilson, J.C. (1973). Environmental and birth defects, Academic Press, New York; appendix 3, 227-232
  78. Worthing, C.R. and Walker, S.B. (1994). The pesticide mannual, 10th Ed., a world Compendium, British Crop Protection Council, pp. 200-201