DOI QR코드

DOI QR Code

Involvement of Endoplasmic Reticulum Stress in Palmitate-induced Apoptosis in HepG2 Cells

  • Cho, Hyang-Ki (Department of Food and Nutrition, Seoul National University) ;
  • Lee, Jin-Young (Department of Food and Nutrition, Seoul National University) ;
  • Jang, Yu-Mi (Department of Food and Nutrition, Seoul National University) ;
  • Kwon, Young-Hye (Department of Food and Nutrition, Seoul National University)
  • Published : 2008.06.01

Abstract

The results of recent studies indicate that high levels of free fatty acids(FFAs) and adipokines may be the main causes of non-alcoholic liver disease; however, the molecular mechanism that links FFAs to lipotoxicity remains unclear. In the present study, we treated HepG2 cells with FFA(either palmitate or oleate) to investigate the mechanisms involved in lipotoxicity in the liver cells. We also treated cells with palmitate in the presence of a chemical chaperone, 4-phenylbutyric acid(PBA), to confirm the involvement of ER stress in lipotoxicity. Palmitate significantly induced cytotoxicity in dose- and time-dependent manners. Apoptosis was also significantly induced by palmitate as measured by caspase-3 activity and DAPI staining. Palmitate led to increased expressions of the spliced form of X-box-protein(Xbp)-1 mRNA and C/EBP homologous transcription factor(CHOP) protein, suggesting activation of the unfolded-protein response. PBA co-incubation significantly attenuated apoptosis induced by palmitate. The above data demonstrate that high levels of palmitate induce apoptosis via the mediation of ER stress in the liver cells and that chemical chaperones act to modulate ER stress and accompanying apoptosis.

Keywords

References

  1. Bernier, V., Lagace, M., Bichet, D.G. and Bouvier, M. (2004). Pharmacological chaperones: potential treatment for conformational diseases. Trends Endocrinol. Metab., 15, 222-228 https://doi.org/10.1016/j.tem.2004.05.003
  2. Borradaile, N., Han, X., Harp, J., Gale, S., Ory, D. and Schaffer, J. (2006). Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J. Lipid Res., 47, 2726-2737 https://doi.org/10.1194/jlr.M600299-JLR200
  3. Boyce, M. and Yuan, J. (2006). Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ., 13, 363-373 https://doi.org/10.1038/sj.cdd.4401817
  4. Carmichael, J., DeGraff, W.G., Gazdar, A.F., Minna, J.D. and Mitchell, J.B. (1987). Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res., 47, 936-942
  5. Chan, A.Y.M., Soltys, C.-L.M., Young, M.E., Proud, C.G. and Dyck, J.R.B. (2004). Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. J. Biol. Chem., 279, 32771-32779 https://doi.org/10.1074/jbc.M403528200
  6. Dandona, P., Aljada, A. and Bandyopadhyay, A. (2004). Inflammation: The link between insulin resistance, obesity and diabetes. Trends Immunol., 25, 4-7 https://doi.org/10.1016/j.it.2003.10.013
  7. Guo, W., Wong, S., Xie, W., Lei, T. and Luo, Z. (2007). Palmitate modulates intracellular signaling, induces endoplasmic reticulum stress, and causes apoptosis in mouse 3T3-L1 and rat primary preadipocytes. Am. J. Physiol. Endocrinol. Metab., 293, E576-E586 https://doi.org/10.1152/ajpendo.00523.2006
  8. Hamilton, J. and Kamp, F. (1999). How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes., 48, 2255-2269 https://doi.org/10.2337/diabetes.48.12.2255
  9. Harding, H.P. and Ron, D. (2002). Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes, 51 Suppl 3, S455-S461 https://doi.org/10.2337/diabetes.51.2007.S455
  10. Holland, W., Brozinick, J., Wang, L., Hawkins, E., Sargent, K., Liu, Y., Narra, K., Hoehn, K., Knotts, T., Siesky, A., Nelson, D., Karathanasis, S., Fontenot, G., Birnbaum, M. and Summers, S. (2007). Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesityinduced insulin resistance. Cell Metab., 5, 167-179 https://doi.org/10.1016/j.cmet.2007.01.002
  11. Hotamisligil, G.S. (2006). Inflammation and metabolic disorders. Nature, 444, 860-867 https://doi.org/10.1038/nature05485
  12. Hwang, I., Shin, I., Song, Y., Sung, M., Park, H., Lee, Y., Park, C., Lee, M., Oh, K., Sim, Y. and Hong, J. (2002). Intracellular calcium concentration in the glutamate-induced cytotoxicity in PC12 cells. J. Toxicol. Pub. Health, 18, 355-362
  13. Javitt, N. (1990). Hep G2 cells as a resource for metabolic studies: lipoprotein, cholesterol, and bile acids. FASEB J., 4, 161-168 https://doi.org/10.1096/fasebj.4.2.2153592
  14. Joshi-Barve, S., Barve, S., Amancherla, K., Gobejishvili, L., Hill, D., Cave, M., Hote, P. and McClain, C. (2007). Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology, 46, 823-830 https://doi.org/10.1002/hep.21752
  15. Karaskov, E., Scott, C., Zhang, L., Teodoro, T., Ravazzola, M. and Volchuk, A. (2006). Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology, 147, 3398-3407 https://doi.org/10.1210/en.2005-1494
  16. Kaufman, R.J. (2002). Orchestrating the unfolded protein response in health and disease. J. Clin. Invest., 110, 1389-1398 https://doi.org/10.1172/JCI0216886
  17. Kharroubi, I., Ladriere, L., Cardozo, A.K., Dogusan, Z., Cnop, M. and Eizirik, D.L. (2004). Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology, 145, 5087-5096 https://doi.org/10.1210/en.2004-0478
  18. Kim, S. (2005). Determination of insulin signaling pathways in hepatocytes. J. Toxicol. Pub. Health, 21, 195-208
  19. Kubota, K., Niinuma, Y., Kaneko, M., Okuma, Y., Sugai, M., Omura, T., Uesugi, M., Uehara, T., Hosoi, T. and Nomura, Y. (2006). Suppressive effects of 4-phenylbutyrate on the aggregation of Pael receptors and endoplasmic reticulum stress. J. Neurochem., 97, 1259-1268 https://doi.org/10.1111/j.1471-4159.2006.03782.x
  20. Lee, Y., Lee, S., Son, D., Lee , S., Park, H., Nam, S., Kim, D., Yun, Y., Yoo, H., Oh, K., Kim, T., Han, S. and Hong, J. (2004). Bisphenol A disrupts intracellular calcium homeostasis and its relationship with cytotoxicity. J. Toxicol. Pub. Health, 20, 241-250
  21. Mishra, R. and Simonson, M. (2005). Saturated free fatty acids and apoptosis in microvascular mesangial cells: palmitate activates pro-apoptotic signaling involving caspase 9 and mitochondrial release of endonuclease G. Cardiovasc Diabetol., 4, 2 https://doi.org/10.1186/1475-2840-4-2
  22. Moffitt, J.H., Fielding, B.A., Evershed, R., Berstan, R., Currie, J.M. and Clark, A. (2005). Adverse physicochemical properties of tripalmitin in beta cells lead to morphological changes and lipotoxicity in vitro. Diabetologia., 48, 1819-1829 https://doi.org/10.1007/s00125-005-1861-9
  23. Moscatiello, S., Manini, R. and Marchesini, G. (2007). Diabetes and liver disease: an ominous association. Nutr. Metab. Cardiovasc Dis., 17, 63-70 https://doi.org/10.1016/j.numecd.2006.08.004
  24. Nakatani, Y., Kaneto, H., Kawamori, D., Yoshiuchi, K., Hatazaki, M., Matsuoka, T.A., Ozawa, K., Ogawa, S., Hori, M., Yamasaki, Y. and Matsuhisa, M. (2005). Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J. Biol. Chem., 280, 847-851 https://doi.org/10.1074/jbc.M411860200
  25. Ozcan, U., Cao, Q., Yilmaz, E., Lee, A.H., Iwakoshi, N.N., Ozdelen, E., Tuncman, G., Gorgun, C., Glimcher, L.H. and Hotamisligil, G.S. (2004). Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science, 306, 457-461 https://doi.org/10.1126/science.1103160
  26. Ozcan, U., Yilmaz, E., Ozcan, L., Furuhashi, M., Vaillancourt, E., Smith, R.O., Gorgun, C.Z. and Hotamisligil, G.S. (2006). Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science, 313, 1137-1140 https://doi.org/10.1126/science.1128294
  27. Summers, S. (2006). Ceramides in insulin resistance and lipotoxicity. Prog. Lipid Res., 45, 42-72 https://doi.org/10.1016/j.plipres.2005.11.002
  28. Terai, K., Hiramoto, Y., Masaki, M., Sugiyama, S., Kuroda, T., Hori, M., Kawase, I. and Hirota, H. (2005). AMP-Activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol. Cell. Biol., 25, 9554-9575 https://doi.org/10.1128/MCB.25.21.9554-9575.2005
  29. Wei, Y., Wang, D., Topczewski, F. and Pagliassotti, M.J. (2006). Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am. J. Physiol. Endocrinol. Metab., 291, E275-E281 https://doi.org/10.1152/ajpendo.00644.2005
  30. Welch, W. and Brown, C. (1996). Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones., 1, 109-115 https://doi.org/10.1379/1466-1268(1996)001<0109:IOMACC>2.3.CO;2
  31. Yam, G., Gaplovska-Kysela, K., Zuber, C. and Roth, J. (2007). Sodium 4-phenylbutyrate acts as a chemical chaperone on misfolded myocilin to rescue cells from endoplasmic reticulum stress and apoptosis. Invest. Ophthalmol. Vis. Sci., 48, 1683-1690 https://doi.org/10.1167/iovs.06-0943
  32. Zhang, K., Shen, X., Wu, J., Sakaki, K., Saunders, T., Rutkowski, D.T., Back, S.H. and Kaufman, R.J. (2006). Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell, 124, 587-599 https://doi.org/10.1016/j.cell.2005.11.040