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SOME FIXED POINT THEOREMS ON FUZZY METRIC
SPACES WITH IMPLICIT RELATIONS

Ishak Altun and Duran Turkoglu

Abstract. In this paper, we give some fixed point theorems on fuzzy
metric spaces with an implicit relation. Our results extend and generalize
some fixed point theorems on complete fuzzy metric spaces by using a new
technique.

1. Introduction and preliminaries

The concept of fuzzy sets was introduced by Zadeh [25]. It was developed
extensively by many authors and used in various fields. To use this concept in
topology and analysis, several researchers have defined fuzzy metric spaces in
various ways. Many authors have studied fixed point theory in fuzzy metric
spaces for fuzzy mappings (see [1]-[6], [11], [13]-[16], [21], [22]).

In this paper, we give an implicit relation on fuzzy metric spaces and present
some fixed point theorems. This theorems are generalization of some previous
fixed point theorems given by some authors.

Now, we begin with some definitions.

Definition 1 ([20]). A binary operation ? : [0, 1] × [0, 1] → [0, 1] is called a
continuous t-norm if ([0, 1], ?) is an Abelian topological monoid with the unit
1 such that a ? b ≤ c ? d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Examples of t-norms are a ? b = ab and a ? b = min{a, b}.
Definition 2 ([10]). The 3-tuple (X, M, ?) is called a fuzzy metric space if X
is an arbitrary set, ? is a continuous t-norm and M is a fuzzy set in X2×(0,∞)
satisfying the following conditions:
(Fm-1) M(x, y, t) > 0,
(Fm-2) M(x, y, t) = 1 if and only if x = y,
(Fm-3) M(x, y, t) = M(y, x, t),
(Fm-4) M(x, y, t) ? M(y, z, s) ≤ M(x, z, t + s),
(Fm-5) M(x, y, ·) : (0,∞) → [0, 1] is continuous for all x, y, z ∈ X and t, s > 0.
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In the following example, we show that every metric induces a fuzzy metric.

Example 1 ([10]). Let (X, d) be a metric space. Define a ? b = ab (or a ? b =
min{a, b}) and, for all x, y ∈ X,

M(x, y, t) =
t

t + d(x, y)
.

Then (X, M, ?) is a fuzzy metric space. We call this fuzzy metric M induced
by the metric d the standard fuzzy metric.

Lemma 1 ([11]). For all x, y ∈ X, M(x, y, ·) is nondecreasing on (0,∞).

Proof. Suppose that M(x, y, s) < M(x, y, t) for some 0 < t < s. Then we have

M(x, y, t) ? M(y, y, s− t) ≤ M(x, y, s) < M(x, y, t).

By (Fm-2), M(y, y, s − t) = 1 and thus M(x, y, t) ≤ M(x, y, s) < M(x, y, t),
which is a contradiction. ¤
Definition 3 ([24]). Let (X, M, ?) be a fuzzy metric space.

(1) A sequence {xn} in X is called a Cauchy sequence if, for any 0 < ε < 1
and t > 0, there exists n0 ∈ N such that M(xn, xm, t) > 1 − ε for all
m,n ≥ n0.

(2) A sequence {xn} in X is said to be convergent to a point x ∈ X if, for
any 0 < ε < 1 and t > 0, there exists n0 ∈ N such that M(xn, x, t) >
1− ε for all n ≥ n0.

(3) A fuzzy metric space (X, M, ?) in which every Cauchy sequence is con-
vergent is said to be complete.

Lemma 2 ([16]). Let (X, M, ?) be a fuzzy metric space such that, for all x, y ∈
X, M(x, y, t) → 1 as t → ∞. If there exists a constant 0 < k < 1 such that,
for all t > 0,

M(x, y, kt) ≥ M(x, y, t)
for all x, y ∈ X, then x = y.

Proof. If M(x, y, kt) ≥ M(x, y, t) for all t > 0 and some constant 0 < k < 1,
then we have

M(x, y, s) ≥ M(x, y,
s

k
) ≥ M(x, y,

s

k2
) ≥ · · · ≥ M(x, y,

s

kn
)

for all s > 0 and x, y ∈ X. Letting n → ∞, we have M(x, y, s) = 1 and thus
x = y. ¤

Now, we give some definitions of compatible mappings, some properties and
an example in fuzzy metric spaces.

Definition 4 ([16]). Let A and B be mappings from a fuzzy metric space
(X, M, ?) into itself. The mappings A and B are said to be compatible if, for
all t > 0, M(ABxn, BAxn, t) → 1 as n → ∞ whenever {xn} is a sequence in
X such that Axn, Bxn → z as n →∞ for some z ∈ X.
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Definition 5 ([7]). Let A and B be mappings from a fuzzy metric space
(X, M, ?) into itself. The mappings A and B are said to be compatible of type
(α) if, for all t > 0, M(ABxn, BBxn, t) → 1 and M(AAxn, BAxn, t) → 1 as
n →∞ whenever {xn} is a sequence in X such that Axn, Bxn → z as n →∞
for some z ∈ X.

Definition 6 ([8]). Let A and B be mappings from a fuzzy metric space
(X, M, ?) into itself. The mappings A and B are said to be compatible of type
(β) if, for all t > 0, M(AAxn, BBxn, t) → 1 as n → ∞ whenever {xn} is a
sequence in X such that Axn, Bxn → z as n →∞ for some z ∈ X.

Proposition 1 ([7]). Let (X,M, ?) be a FM -space with t?t ≥ t for all t ∈ [0, 1]
and A, B be continuous mappings from X into itself. Then A and B are
compatible if and only if they are compatible of type (α).

Proposition 2 ([8]). Let (X,M, ?) be a FM -space with t?t ≥ t for all t ∈ [0, 1]
and A, B be continuous mappings from X into itself. Then A and B are
compatible if and only if they are compatible of type (β).

Proposition 3 ([8]). Let (X,M, ?) be a FM -space with t?t ≥ t for all t ∈ [0, 1]
and A, B be continuous mappings from X into itself. Then A and B are
compatible of type (α) if and only if they are compatible of type (β).

Proposition 4 ([22]). Let (X,M, ?) be a FM-space with the t ? t ≥ t for all
t ∈ [0, 1]. A and S be compatible maps of type (β) from X into itself and let
{xn} be a sequence in X such that Axn, Sxn → z for some z ∈ X. Then we
have the following

(I) SSxn → Az if A is continuous at z,
(II) AAxn → Sz if S is continuous at z,

(III) ASz = SAz and Az = Sz if A and S are continuous at z.

Example 2. Let X = [0,∞) with the metric d defined by d(x, y) = |x− y| .
For each t ∈ (0,∞) and x, y ∈ X, define M by

M(x, y, t) =
[
exp

( |x− y|
t

)]−1

.

Clearly, (X, M, ?) is a FM -space, where ? is define by a ? b = min{a, b}. Let
A and B be defined by Ax = 1 for all x ∈ [0, 1], Ax = 1 + x for all x ∈ (1,∞)
and Bx = 1 + x for all x ∈ [0, 1), Bx = 1 for all x ∈ [1,∞). Let {xn} be a
sequence in X such that lim

n→∞
Axn = lim

n→∞
Bxn = z. By definition of A and B,

z ∈ {1} and lim
n→∞

xn = 0. A and B both are discontinuous at z = 1. Therefore,
we have

M(AAxn, BAxn, t) → 1, M(AAxn, BBxn, t) → 1 as n →∞.
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Also, we consider the sequence {xn} in X defined by xn = 1
2n , n = 1, 2, . . . .

Then we have Axn, Bxn → 1 as n →∞. Further, for t > 0, we have

M(ABxn, BAxn, t) →
[
exp

(
1
t

)]−1

< 1,

M(ABxn, BBxn, t) →
[
exp

(
1
t

)]−1

< 1

as n → ∞. Therefore, A,B is compatible of type (β), but they are neither
compatible nor compatible of type (α).

2. Implicit relation

Implicit relations on metric spaces have been used in many articles (see [13],
[19]-[17], [23]).

Let I = [0, 1], ? be a continuous t-norm and F : I6 → R be a continuous
function. Now, we consider the following conditions:

(F-1) F is nonincreasing in the fifth and sixth variables,
(F-2) if, for some constant k ∈ (0, 1), we have

(Fa) F (u(kt), v(t), v(t), u(t), 1, u(
t

2
) ? v(

t

2
)) ≥ 1

or

(Fb) F (u(kt), v(t), u(t), v(t), u(
t

2
) ? v(

t

2
), 1) ≥ 1

for any fixed t > 0 and any nondecreasing functions u, v : (0,∞) → I
with 0 < u(t), v(t) ≤ 1, then there exists h ∈ (0, 1) with u(ht) ≥
v(t) ? u(t),

(F-3) if, for some constant k ∈ (0, 1), we have F (u(kt), u(t), 1, 1, u(t), u(t)) ≥
1 for any fixed t > 0 and any nondecreasing function u : (0,∞) → I,
then u(kt) ≥ u(t).

Now, let F be the set of all real continuous functions F : I6 → R satisfying
the conditions (F-1)∼(F-3).

Example 3. Let F (u1, . . . , u6) =
u1

min{u2, . . . , u6} and a ? b = min{a, b}.
Let t > 0, 0 < u(t), v(t) ≤ 1, k ∈ (0, 1

2 ), where u, v : [0,∞) → I are
nondecreasing functions. Now, suppose that

F (u(kt), v(t), v(t), u(t), 1, u(
t

2
) ? v(

t

2
)) ≥ 1,

i.e.,

F (u(kt), v(t), v(t), u(t), 1, u(
t

2
) ? v(

t

2
)) =

u(kt)
min{v(t), u(t), 1, u( t

2 ) ? v( t
2 )}

=
u(kt)

min{v( t
2 ), u( t

2 )} ≥ 1.
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Thus u(ht) ≥ v(t) ? u(t) if h = 2k ∈ (0, 1). A similar argument works if (Fb) is
assumed. Finally, suppose that t > 0 is fixed, u : (0,∞) → I is a nondecreasing
function and

F (u(kt), u(t), 1, 1, u(t), u(t)) =
u(kt)
u(t)

≥ 1

for some k ∈ (0, 1). Then we have u(kt) ≥ u(t) and thus F ∈ F .

Example 4. Let F (u1, . . . , u6) =
u1 max{u2, u3, u4}

min{u5, u6} and ? be a continuous

t-norm.
Let t > 0, 0 < u(t), v(t) ≤ 1, k ∈ (0, 1

2 ), where u, v : [0,∞) → I are
nondecreasing functions. Now, suppose that

F (u(kt), v(t), v(t), u(t), 1, u(
t

2
) ? v(

t

2
)) ≥ 1,

i.e.,

F (u(kt), v(t), v(t), u(t), 1, u(
t

2
) ? v(

t

2
)) =

u(kt)max{v(t), u(t)}
u( t

2 ) ? v( t
2 )

≥ 1.

Thus u(ht) ≥ v(t) ? u(t) if h = 2k ∈ (0, 1). A similar argument works if (Fb) is
assumed. Finally, suppose that t > 0 is fixed, u : (0,∞) → I is a nondecreasing
function and

F (u(kt), u(t), 1, 1, u(t), u(t)) =
u(kt)
u(t)

≥ 1

for some k ∈ (0, 1). Then we have u(kt) ≥ u(t) and thus F ∈ F .

Example 5. Let F (u1, . . . , u6) =
(u1)3

[u2 ? u3 ? u4]max{u5, u6} and a ? b = ab.

Let t > 0, 0 < u(t), v(t) ≤ 1, k ∈ (0, 1), where u, v : [0,∞) → I are
nondecreasing functions. Now, suppose that

F (u(kt), v(t), v(t), u(t), 1, u(
t

2
) ? v(

t

2
)) ≥ 1,

i.e.,

F (u(kt), v(t), v(t), u(t), 1, u(
t

2
) ? v(

t

2
)) =

(u(kt))3

(v(t))2u(t)
≥ 1.

Thus we have

u(kt) = u(ht) ≥ (v(t))
2
3 (u(t))

1
3 ≥ v(t)u(t) = v(t) ? u(t)

if h = k ∈ (0, 1). A similar argument works if (Fb) is assumed. Finally, suppose
that t > 0 is fixed, u : [0,∞) → I is a nondecreasing function and

F (u(kt), u(t), 1, 1, u(t), u(t)) =
(u(kt))3

(u(t))2
≥ 1

for some k ∈ (0, 1). Then we have u(kt) ≥ u(t) and thus F ∈ F .
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3. Common fixed point theorems

In this section, we prove some common fixed point theorems for four map-
pings on complete fuzzy metric spaces.

Theorem 1. Let (X,M, ?) be a complete fuzzy metric space with a ? b =
min{a, b} for all a, b ∈ I and A, B, S and T be mappings from X into itself
satisfying the conditions:

(i) S(X) ⊆ B(X) and T (X) ⊆ A(X),
(ii) one of the mappings S, T,A, B is continuous,
(iii) S and A as well as T and B are compatible of type (α)
(iv) there exist k ∈ (0, 1) and F ∈ F such that

F (M(Sx, Ty, kt),M(Ax,By, t),M(Sx, Ax, t),
M(Ty,By, t), M(Sx, By, t), M(Ty,Ax, t))

≥ 1

for all x, y ∈ X and t > 0.
(v) for all x, y ∈ X, M(x, y, t) → 1 as t →∞.

Then A,B, S and T have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point of X. From (i), we can construct a sequence
{yn} in X as follows:

y2n+1 = Sx2n = Bx2n+1 and y2n+2 = Tx2n+1 = Ax2n+2

for all n = 0, 1, . . .. Then, by (iv), we have, for any t > 0,

F (M(Sx2n, Tx2n+1, kt),M(Ax2n, Bx2n+1, t),M(Sx2n, Ax2n, t),
M(Tx2n+1, Bx2n+1, t),M(Sx2n, Bx2n+1, t),M(Tx2n+1, Ax2n, t))

≥ 1

and so

F (M(Sx2n, Tx2n+1, kt),M(Tx2n−1, Sx2n, t),M(Sx2n, Tx2n−1, t),

M(Tx2n+1, Sx2n, t), 1,M(Tx2n+1, Sx2n,
t

2
) ? M(Sx2n, Tx2n−1,

t

2
))

≥ 1.

By (F-2), we have

M(Sx2n, Tx2n+1, ht) ≥ M(Sx2n, Tx2n−1, t) ? M(Sx2n, Tx2n+1, t)

and so

M(y2n+1, y2n+2, ht) ≥ M(y2n+1, y2n, t) ? M(y2n+1, y2n+2, t),

which implies (note a ? b = min{a, b}) that

M(y2n+1, y2n+2, ht) ≥ M(y2n+1, y2n, t) = M(y2n, y2n+1, t).

Again, by (F-2), we have

M(y2n+1, y2n, ht) ≥ M(y2n, y2n−1, t).
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In general, we have, for all m = 1, 2, . . . and t > 0,

(1) M(ym+1, ym+2, ht) ≥ M(ym+1, ym, t) = M(ym, ym+1, t).

To prove that {yn} is a Cauchy sequence, first, we prove that, for any 0 <
λ < 1 and t > 0,

(2) M(yn+1, yn+m+1, t) > 1− λ

for all n ≥ n0 and m ∈ N. Here we use induction. From (1), we have

M(yn+1, yn+2, t) ≥ M(yn, yn+1,
t

h
) ≥ · · · ≥ M(y1, y2,

t

hn
) → 1

as n →∞, i.e., for any t > 0 and λ ∈ (0, 1), we can choose n0 ∈ N such that

(3) M(yn+1, yn+2, t) > 1− λ.

Thus (2) is true for m = 1. Suppose that (2) is true for some m ∈ N. Then
we shall show that it is also true for m + 1 ∈ N. Using the definition of fuzzy
metric space, (1) and (2) (which is true for m ∈ N), we have

M(yn+1, yn+m+2, t) ≥ M(yn+1, yn+m+1,
t

2
) ? M(yn+m+1, yn+m+2,

t

2
) ≥ 1− λ.

Hence (2) is true for m + 1 ∈ N. Thus {yn} is Cauchy sequence in X. Since
(X, M, ?) is complete, {yn} converges to a point z ∈ X. Since {Ax2n+2},
{Bx2n+1}, {Sx2n} and {Tx2n+1} are subsequences of {yn}, we have Ax2n+2,
Bx2n+1, Sx2n, Tx2n+1 → z as n →∞.

Now, suppose that A is continuous. Then the sequence {ASx2n} converges
to Az as n →∞. Notice that, for any t > 0,

M(SAx2n, Az, t) ≥ M(SAx2n, AAx2n,
t

2
) ? M(AAx2n, Az,

t

2
).

Now, since A is continuous and S, A are compatible of type (α), letting n →∞,
we deduce that the sequence {SAx2n} converges to Az as n →∞. Using (iv),
we have, for any t > 0,

F (M(SAx2n, Tx2n+1, kt),M(AAx2n, Bx2n+1, t),M(SAx2n, AAx2n, t),
M(Tx2n+1, Bx2n+1, t),M(SAx2n, Bx2n+1, t),M(Tx2n+1, AAx2n, t))

≥ 1.

and then, by letting n →∞, since F is continuous, we have

F (M(Az, z, kt),M(Az, z, t), 1, 1,M(Az, z, t), M(Az, z, t)) ≥ 1.

Therefore, from (F-3), we have M(Az, z, kt) ≥ M(Az, z, t). From Lemma 2, we
have Az = z. Furthermore, by (iv), we have

F (M(Sz, Tx2n+1, kt),M(Az, Bx2n+1, t), M(Az, Sz, t),
M(Tx2n+1, Bx2n+1, t),M(Sz, Bx2n+1, t),M(Tx2n+1, Az, t))

≥ 1.
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and, letting n →∞, we get

F (M(Sz, z, kt), 1,M(Sz, z, t), 1,M(Sz, z, t), 1) ≥ 1.

On the other hand, since

M(Sz, z, t) ≥ M(Sz, z,
t

2
) = M(Sz, z,

t

2
) ? 1

and F is nonincreasing in the fifth variable, we have, for any t > 0,

F (M(Sz, z, kt), 1,M(Sz, z, t), 1,M(Sz, z,
t

2
) ? 1, 1)

≥ F (M(Sz, z, kt), 1,M(Sz, z, t), 1,M(Sz, z, t), 1)
≥ 1,

which implies, by (F-2), that Sz = z. This means that z is the range of S and,
since S(X) ⊆ B(X), there exists a point u ∈ X such that Bu = z. Using (iv),
we have successively

F (M(Sz, Tu, kt),M(Az, Bu, t),M(Sz,Az, t),
M(Tu, Bu, t),M(Sz, Bu, t), M(Tu,Az, t))

= F (M(z, Tu, kt), 1, 1,M(z, Tu, t), 1,M(z, Tu, t))
≥ 1,

which implies, by (F-2), that z = Tu. Since Bu = Tu = z and B, T are
compatible of type (α), we have TTu = BTu so Tz = TTu = BTu = Bz.
Therefore, from (iv), we have, for any t > 0,

F (M(Sz, Tz, kt),M(Az,Bz, t),M(Sz,Az, t),
M(Tz,Bz, t),M(Sz, Bz, t),M(Tz, Az, t))

= F (M(z, Tz, kt),M(z, Tz, t), 1, 1,M(z, Tz, t), M(z, Tz, t))
≥ 1.

Thus, from (F-3), we have M(z, Tz, kt) ≥ M(z, Tz, t). Again, from Lemma 2,
we have z = Tz = Bz. Consequently, z is a common fixed point of S, T , A and
B. The same result holds if we assume that B is continuous instead of A.

Now, suppose that S is continuous. Then the sequence{SAx2n} converges
to Sz as n →∞. Notice that, for any t > 0,

M(ASx2n, Sz, t) ≥ M(ASx2n, SSx2n,
t

2
) ? M(SSx2n, Sz,

t

2
).

Now, since S is continuous and S, A are compatible of type (α), letting n →∞,
we deduce that the sequence {ASx2n} converges to Sz. Using (iv), we have,
for any t > 0,

F (M(SSx2n, Tx2n+1, kt),M(ASx2n, Bx2n+1, t),M(SSx2n, ASx2n, t),
M(Tx2n+1, Bx2n+1, t),M(SSx2n, Bx2n+1, t),M(Tx2n+1, ASx2n, t))

≥ 1
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and then, by letting n →∞, since F is continuous, we have

F (M(Sz, z, kt),M(Sz, z, t), 1, 1,M(Sz, z, t),M(Sz, z, t)) ≥ 1.

Thus, from (F-3), we have M(Sz, z, kt) ≥ M(Sz, z, t). Again, from Lemma 2,
we have Sz = z. This means that z is the range of S and, since S(X) ⊆ B(X),
there exists a point v ∈ X such that Bv = z. Using (iv), we have, for any t > 0,

F (M(SSx2n, T v, kt),M(ASx2n, Bv, t),M(SSx2n, ASx2n, t),
M(Tv, Bv, t),M(SSx2n, Bv, t),M(Tv, ASx2n, t))

≥ 1.

Letting n →∞, we get

F (M(z, Tv, kt), 1, 1, M(z, Tv, t), 1,M(z, Tv, t)) ≥ 1,

which implies by (F-2), that z = Tv. Since Bv = Tv = z and B, T are
compatible of type (α), we have TBv = BBv and so Tz = TBv = BBv = Bz.
Thus, from (iv), we have

F (M(Sx2n, T z, kt),M(Ax2n, Bz, t),M(Sx2n, Ax2n, t),
M(Tz, Bz, t),M(Sx2n, Bz, t),M(Tz, Ax2n, t))

≥ 1.

Letting n →∞, we get

F (M(z, Tz, kt), M(z, Tz, t), 1, 1,M(z, Tz, t),M(z, Tz, t)) ≥ 1.

Thus z = Tz = Bz. This means that z is the range of T and, since T (X) ⊆
A(X), there exists w ∈ X such that Aw = z. Thus, from (iv), we have, for any
t > 0,

F (M(Sw, Tz, kt),M(Aw,Bz, t),M(Sw, Aw, t),
M(Tz, Bz, t),M(Sw, Bz, t),M(Tz,Aw, t))

= F (M(Sw, z, kt), 1,M(Sw, z, t), 1,M(Sw, z, t), 1)
≥ 1

and, by (F-2), we have z = Sw = Aw. Since Sw = Aw = z and S, A are
compatible of type (α), we have z = Sz = SAw = AAw = Az and thus
z = Az. Consequently, z is a common fixed point of S, T , A and B. The same
result holds if we assume that T is continuous instead of S.

Finally, we show that the point z is unique common fixed point of S, T ,
A and B. Suppose that S, T , A and B have another common fixed point z1.
Then, by (iv), we have, for any t > 0,

F (M(Sz, Tz1, kt),M(Az, Bz1, t),M(Sz, Az, t)
M(Tz1, Bz1, t),M(Sz, Bz1, t),M(Tz1, Az, t)

= F (M(z, z1, kt), M(z, z1, t), 1, 1,M(z, z1, t),M(z, z1, t))
≥ 1.
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Thus, from (F-3), we have M(z, z1, kt) ≥ M(z, z1, t). From Lemma 2, we have
z = z1. This completes the proof. ¤

Now we give a fixed point theorem using compatible maps of type (β).

Theorem 2. Let (X,M, ?) be a complete fuzzy metric space with a ? b =
min{a, b} for all a, b ∈ I and A, B, S and T be mappings from X into itself
satisfying the conditions:

(i) S(X) ⊆ B(X) and T (X) ⊆ A(X),
(ii) one of the mappings S, T,A, B is continuous,
(iii) S and A as well as T and B are compatible of type (β)
(iv) there exist k ∈ (0, 1) and F ∈ F such that

F (M(Sx, Ty, kt),M(Ax,By, t),M(Sx, Ax, t),
M(Ty,By, t), M(Sx, By, t), M(Ty,Ax, t))

≥ 1

for all x, y ∈ X and t > 0.
(v) for all x, y ∈ X, M(x, y, t) → 1 as t →∞.

Then A,B, S and T have a unique common fixed point in X.

Proof. We can show that {yn} is Cauchy sequence in X as in Theorem 1.
Again, since (X, M, ?) is complete, {yn} converges to a point z ∈ X. Since
{Ax2n+2}, {Bx2n+1}, {Sx2n} and {Tx2n+1} are subsequences of {yn}, we have
Ax2n+2, Bx2n+1, Sx2n, Tx2n+1 → z as n →∞.

Now, suppose that A is continuous. Then the sequence {ASx2n} converges
to Az as n →∞. From Proposition 4, the sequence {SSx2n} converges to Az
as n →∞. Now using (iv), we have, for any t > 0,

F (M(SSx2n, Tx2n+1, kt),M(ASx2n, Bx2n+1, t),M(SSx2n, ASx2n, t),
M(Tx2n+1, Bx2n+1, t),M(SSx2n, Bx2n+1, t),M(Tx2n+1, ASx2n, t))

≥ 1.

and then, by letting n →∞, since F is continuous, we have

F (M(Az, z, kt),M(Az, z, t), 1, 1,M(Az, z, t), M(Az, z, t)) ≥ 1.

Therefore, from (F-3), we have M(Az, z, kt) ≥ M(Az, z, t). From Lemma 2, we
have Az = z. Furthermore, by (iv), we have

F (M(Sz, Tx2n+1, kt),M(Az, Bx2n+1, t), M(Az, Sz, t),
M(Tx2n+1, Bx2n+1, t),M(Sz, Bx2n+1, t),M(Tx2n+1, Az, t))

≥ 1.

and, letting n →∞, we get

F (M(Sz, z, kt), 1,M(Sz, z, t), 1,M(Sz, z, t), 1) ≥ 1.
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On the other hand, since

M(Sz, z, t) ≥ M(Sz, z,
t

2
) = M(Sz, z,

t

2
) ? 1

and F is nonincreasing in the fifth variable, we have, for any t > 0,

F (M(Sz, z, kt), 1,M(Sz, z, t), 1,M(Sz, z,
t

2
) ? 1, 1)

≥ F (M(Sz, z, kt), 1,M(Sz, z, t), 1,M(Sz, z, t), 1)
≥ 1,

which implies, by (F-2), that Sz = z. This means that z is the range of S and,
since S(X) ⊆ B(X), there exists a point u ∈ X such that Bu = z. Using (iv),
we have successively

F (M(Sz, Tu, kt),M(Az, Bu, t),M(Sz,Az, t),
M(Tu, Bu, t),M(Sz, Bu, t), M(Tu,Az, t))

= F (M(z, Tu, kt), 1, 1,M(z, Tu, t), 1,M(z, Tu, t))
≥ 1,

which implies, by (F-2), that z = Tu. Since Bu = Tu = z and B, T are
compatible of type (β), we have TTu = BBu so Tz = TTu = BBu = Bz.
Therefore, from (iv), we have, for any t > 0,

F (M(Sz, Tz, kt),M(Az,Bz, t),M(Sz,Az, t),
M(Tz,Bz, t),M(Sz, Bz, t),M(Tz, Az, t))

= F (M(z, Tz, kt),M(z, Tz, t), 1, 1,M(z, Tz, t), M(z, Tz, t))
≥ 1.

Thus, from (F-3), we have M(z, Tz, kt) ≥ M(z, Tz, t). Again, from Lemma 2,
we have z = Tz = Bz. Consequently, z is a common fixed point of S, T , A and
B. The same result holds if we assume that B is continuous instead of A.

Now, suppose that S is continuous. Then the sequence{SAx2n} converges
to Sz as n →∞. From Proposition 4, the sequence {AAx2n} converges to Sz
as n →∞. Now using (iv), we have, for any t > 0,

F (M(SAx2n, Tx2n+1, kt),M(AAx2n, Bx2n+1, t),M(SAx2n, AAx2n, t),
M(Tx2n+1, Bx2n+1, t),M(SAx2n, Bx2n+1, t),M(Tx2n+1, AAx2n, t))

≥ 1

and then, by letting n →∞, since F is continuous, we have

F (M(Sz, z, kt),M(Sz, z, t), 1, 1,M(Sz, z, t),M(Sz, z, t)) ≥ 1.

Thus, from (F-3), we have M(Sz, z, kt) ≥ M(Sz, z, t). Again, from Lemma 2,
we have Sz = z. This means that z is the range of S and, since S(X) ⊆ B(X),
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there exists a point v ∈ X such that Bv = z. Using (iv), we have, for any t > 0,

F (M(SAx2n, T v, kt),M(AAx2n, Bv, t),M(SAx2n, AAx2n, t),
M(Tv,Bv, t), M(SAx2n, Bv, t),M(Tv, AAx2n, t))

≥ 1.

Letting n →∞, we get

F (M(z, Tv, kt), 1, 1, M(z, Tv, t), 1,M(z, Tv, t)) ≥ 1,

which implies by (F-2), that z = Tv. Since Bv = Tv = z and B, T are
compatible of type (β), we have TTv = BBv and so Tz = TTv = BBv = Bz.
Thus, from (iv), we have

F (M(Sx2n, T z, kt),M(Ax2n, Bz, t),M(Sx2n, Ax2n, t),
M(Tz, Bz, t),M(Sx2n, Bz, t),M(Tz, Ax2n, t))

≥ 1.

Letting n →∞, we get

F (M(z, Tz, kt), M(z, Tz, t), 1, 1,M(z, Tz, t),M(z, Tz, t)) ≥ 1.

Thus z = Tz = Bz. This means that z is the range of T and, since T (X) ⊆
A(X), there exists w ∈ X such that Aw = z. Thus, from (iv), we have, for any
t > 0,

F (M(Sw, Tz, kt),M(Aw,Bz, t),M(Sw, Aw, t),
M(Tz, Bz, t),M(Sw, Bz, t),M(Tz,Aw, t))

= F (M(Sw, z, kt), 1,M(Sw, z, t), 1,M(Sw, z, t), 1)
≥ 1

and, by (F-2), we have z = Sw = Aw. Since Sw = Aw = z and S, A are
compatible of type (β), we have z = Sz = SSw = AAw = Az and thus
z = Az. Consequently, z is a common fixed point of S, T , A and B. The same
result holds if we assume that T is continuous instead of S. ¤

Now, we give an example to illustrate our Theorems.

Example 6. Let (X,M, ?) be a fuzzy metric space with X = [0, 1], a t-norm
? be defined by a ? b = min{a, b} for all a, b ∈ [0, 1] and M be a fuzzy set on
X2 × (0,∞) defined by

M(x, y, t) =
[
exp(

|x− y|
t

)
]−1

for all x, y ∈ X and t > 0. Let F : I6 → R be defined as in Example 3 and
define the mappings A, B, S, T : X → X by

Ax = x, Bx =
x

2
, Sx =

x

4
, Tx =

x

8
,
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respectively. Then, for some k ∈ [ 12 , 1), we have

M(Sx, Ty, kt) =

[
exp(

∣∣x
8 − y

4

∣∣
kt

)

]−1

≥
[
exp(

∣∣x
4 − y

2

∣∣
t

)

]−1

= M(Ax,By, t)
≥ min{M(Ax,By, t),M(Sx, Ax, t),M(Ty, By, t),

M(Sx, By, t),M(Ty, Ax, t)}.
Thus the condition (iv) of Theorem 1 and 2 is satisfied. Also, it is obvious that
the other conditions of the Theorems are satisfied and so zero is the unique
fixed point of A, B, S and T .
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