A REMARK ON INVARIANCE OF QUANTUM MARKOV SEMIGROUPS

VENI CHOI AND CHUL KI KO

ABSTRACT. In [3, 9], using the theory of noncommutative Dirichlet forms in the sense of Cipriani [6] and the symmetric embedding map, authors constructed the KMS-symmetric Markovian semigroup $\{S_t\}_{t\geq 0}$ on a von Neumann algebra \mathcal{M} with an admissible function f and an operator $x \in \mathcal{M}$. We give a sufficient and necessary condition for x so that the semigroup $\{S_t\}_{t\geq 0}$ acts separately on diagonal and off-diagonal operators with respect to a basis and study some results.

1. Introduction

A quantum Markov semigroup on the algebra $L(\mathfrak{h})$ of all bounded operators on a complex separable Hilbert space \mathfrak{h} is a semigroup $\{S_t\}_{t\geq 0}$ of completely positive, identity preserving and normal maps on $L(\mathfrak{h})$ [6]. Quantum Markov semigroups are the natural generalization of classical Markov semigroups and were introduced in physics to model the decay equilibrium of quantum open systems [1, 2, 3, 6, 7, 9, 10]. Many mathematicians and physicists have been interested to the problems whether quantum Markov semigroups on the subalgebra have their extensions on the full algebra [1, 5, 8]. These semigroups acts separately on diagonal and off-diagonal bounded operators with respect to the chosen basis.

Let \mathcal{M} be a von Neumann algebra acting on a complex Hilbert space \mathcal{H} and ξ_0 be a fixed cyclic and separating vector for \mathcal{M} . Let Δ and σ_t be the modular operator and the modular group associated with the pair (\mathcal{M}, ξ_0) , respectively [4]. Consider the symmetric embedding map:

$$i_0: \mathcal{M} \longrightarrow \mathcal{H}$$

 $i_0(A) = \Delta^{1/4} A \xi_0$

In [3, 9], using the theory of noncommutative Dirichlet forms in the sense of Cipriani [6], authors constructed the symmetric Markovian semigroup $\{T_t\}_{t\geq 0}$ on the standard forms of the von Neumann algebra \mathcal{M} , and by the symmetric

O2008 The Korean Mathematical Society

Received August 11, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 46L55, 37A60.

Key words and phrases. quantum Markov semigroups, diagonal operators, invariant subspaces.

embedding map i_0 , the KMS-symmetric Markovian semigroup $\{S_t\}_{t\geq 0}$ on \mathcal{M} : $i_0 \circ S_t = T_t \circ i_0$. Concretely, for a fixed admissible function f and $x \in \mathcal{M}$, $x = x_1 + ix_2, x_k^* = x_k, k = 1, 2$ satisfying suitable conditions, they constructed the KMS-symmetric Markovian semigroup $\{S_t\}$ with the generator G on \mathcal{M} :

(1.1)
$$G(A) = \int [G_1(A,t) + G_2(A,t)]f(t)dt,$$

where

$$G_{1}(A,t) = \sigma_{t+i/2}(x_{1})\sigma_{t}(x_{1})A + A\sigma_{t}(x_{1})\sigma_{t-i/2}(x_{1}) - \sigma_{t+i/2}(x_{1})A\sigma_{t}(x_{1}) - \sigma_{t}(x_{1})A\sigma_{t-i/2}(x_{1})$$

and

$$G_{2}(A,t) = \sigma_{t+i/2}(x_{2})\sigma_{t}(x_{2})A + A\sigma_{t}(x_{2})\sigma_{t-i/2}(x_{2}) -\sigma_{t+i/2}(x_{2})A\sigma_{t}(x_{2}) - \sigma_{t}(x_{2})A\sigma_{t-i/2}(x_{2}).$$

In this paper, we consider the faithful, normal, semifinite trace Tr on $L(\mathfrak{h})$. The Hilbert-Schmidt class $L^2(\mathfrak{h})$ is a Hilbert space with the inner product, $\langle \xi, \eta \rangle = \operatorname{Tr}(\xi^*\eta)$. π_L is the faithful, normal representation of $L(\mathfrak{h})$ given by $\pi_L(x) = L_x$, $L_x\xi = x\xi$ for $\xi \in L^2(\mathfrak{h})$. Put $\mathcal{M} = \pi_L(L(\mathfrak{h}))$.

Let $\{e_k\}_{k=0}^{\infty}$ be an orthonormal basis of \mathfrak{h} . Let ρ , ω and ξ_0 be a strictly positive density matrix, the corresponding normal state and the corresponding cyclic and separating vector, respectively:

$$\rho = \sum_{k=0}^{\infty} r_k |e_k\rangle \langle e_k|, \text{ and } r_k > 0, \sum_{k=0}^{\infty} r_k = 1,$$
$$\omega(L_x) = \operatorname{Tr}(\rho x) = \langle \xi_0, x\xi_0\rangle,$$
$$\xi_0 = \rho^{1/2} = \sum_{k=0}^{\infty} r_k^{1/2} |e_k\rangle \langle e_k|.$$

Since π_L is a monomorphism, we identify $\mathcal{M} = \pi_L(L(\mathfrak{h}))$ with $L(\mathfrak{h})$.

The purpose of this paper is to find a sufficient and necessary condition for $x \in \mathcal{M}$ used to construct the semigroup $\{S_t\}_{t\geq 0}$ on \mathcal{M} so that the semigroup acts separately on diagonal and off-diagonal operators with respect to this basis and, as an application, study the KMS-symmetric Markovian semigroup $\{S_t\}_{t\geq 0}$ which is ρ -invariant.

This paper is organized as follows. In Section 2, we introduce a necessary terminologies and the generator of KMS-symmetric Markovian semigroup on \mathcal{M} constructed in [3, 9]. In Section 3, we give our main results and proofs.

2. The quantum Markov semigroup

In this section, we introduce some terminologies and the generator of KMSsymmetric Markovian semigroup on \mathcal{M} constructed in [3, 9].

Let \mathcal{M} be a σ -finite von Neumann algebra acting on a complex Hilbert space \mathcal{H} with an inner product $\langle \cdot, \cdot \rangle$. Let $\xi_0 \in \mathcal{H}$ be a cyclic and separating vector

83

for \mathcal{M} . We use Δ and J to denote respectively, the modular operator and the modular conjugation associated with the pair (\mathcal{M}, ξ_0) . The associated modular automorphism group is denoted by $\sigma_t : \sigma_t(A) = \Delta^{it} A \Delta^{-it}, A \in \mathcal{M}, t \in \mathbb{R}$. The map $j : \mathcal{M} \to \mathcal{M}'$ is the antilinear *-isomorphism defined by $j(A) = JAJ, A \in \mathcal{M}$, where \mathcal{M}' is the commutant of \mathcal{M} .

The positive cone \mathcal{P} associated with the pair (\mathcal{M}, ξ_0) is the closure of the set $\{Aj(A)\xi_0 : A \in \mathcal{M}\}$. \mathcal{P} can be obtained by the closure of the set $\{\Delta^{1/4}A^*A\xi_0 : A \in \mathcal{M}\}$ and is self-dual in the sense that

$$\{\xi \in \mathcal{H} : \langle \xi, \eta \rangle \ge 0, \ \forall \eta \in \mathcal{P}\} = \mathcal{P}.$$

For the details we refer [6] and Section 2.5 of [4].

The form $(\mathcal{M}, \mathcal{H}, \mathcal{P}, J)$ is the standard form associated with the pair (\mathcal{M}, ξ_0) . The Hilbert space \mathcal{H} is the complexification of the real subspace $\mathcal{H}^J := \{\xi \in \mathcal{H} : \langle \xi, \eta \rangle \in \mathbb{R}, \forall \eta \in \mathcal{P}\}$, whose elements are called *J*-real: $\mathcal{H} = \mathcal{H}^J \oplus i\mathcal{H}^J$. Such a positive cone \mathcal{P} gives a rise to a structure of ordered Hilbert space on \mathcal{H}^J (denoted by \leq) and an anti-unitary involution J on \mathcal{H} by $J(\xi + i\eta) :=$ $\xi - i\eta, \forall \xi, \eta \in \mathcal{H}^J$. For $\xi, \eta \in \mathcal{H}^J, \xi \leq \eta$ means $\eta - \xi \in \mathcal{P}$. Any *J*-real element $\xi \in \mathcal{H}^J$ can be decomposed uniquely as a difference of two orthogonal, positive elements, called the positive and the negative part of ξ : $\xi_+, \xi_- \in$ $\mathcal{P}, \xi = \xi_+ - \xi_-, \langle \xi_+, \xi_- \rangle = 0$. The order interval $\{\eta \in \mathcal{H} : 0 \leq \eta \leq \xi_0\}$, denoted by $[0, \xi_0]$, is a closed convex subset of \mathcal{H} , and we denote the nearest point projection onto $[0, \xi_0]$ by $\eta \to \eta_I$.

Let $\mathcal{M}_0 \subset \mathcal{M}$ be the *-subalgebra of the σ_t -entire analytic elements [4] and \mathcal{M}_+ the subset of positive elements of \mathcal{M} . Let ω be a vector state on \mathcal{M} such that $\omega(A) := \langle \xi_0, A\xi_0 \rangle, A \in \mathcal{M}$.

Consider the semigroup $\{S_t\}_{t\geq 0}$ of everywhere defined linear maps on \mathcal{M} . A semigroup $\{S_t\}_{t\geq 0}$ is said to be *KMS-symmetric* if for all $t \in \mathbb{R}$ and for all $A, B \in \mathcal{M}_0$, one has

(2.1)
$$\omega(S_t(A)\sigma_{-i/2}(B)) = \omega(\sigma_{i/2}(A)S_t(B)).$$

A semigroup $\{S_t\}_{t\geq 0}$ is said to be *real* if $S_t(A^*) = (S_t(A))^*$ for all $A \in \mathcal{M}$ and for all $t \geq 0$, *positive preserving* if $S_t(A) \in \mathcal{M}_+$ for all $A \in \mathcal{M}_+$ and for all $t \geq 0$, *sub-Markovian* if $0 \leq S_t(A) \leq \mathbf{1}$ for all $0 \leq A \leq \mathbf{1}$ and for all $t \geq 0$. A semigroup $\{S_t\}_{t\geq 0}$ is said to be *Markovian* if S_t is positive preserving and $S_t(\mathbf{1}) = \mathbf{1}$ for all $t \geq 0$.

Next, we consider a complex valued, closed, positive sesquilinear form on some linear manifold of $\mathcal{H} : \mathcal{E}(\cdot, \cdot) : D(\mathcal{E}) \times D(\mathcal{E}) \to \mathbb{C}$ satisfying $\mathcal{E}(\xi, \xi) \geq 0$ for all $\xi \in D(\mathcal{E})$, and also the associated quadratic form: $\mathcal{E}[\cdot] : D(\mathcal{E}) \to \mathbb{C}$, $\mathcal{E}[\xi] := \mathcal{E}(\xi, \xi)$. A quadratic form $(\mathcal{E}, D(\mathcal{E}))$ is said to be *J*-real if $JD(\mathcal{E}) \subset D(\mathcal{E})$ and $\mathcal{E}[J\xi] = \mathcal{E}[\xi]$ for any $\xi \in D(\mathcal{E})$, equivalently, $\mathcal{E}(J\xi, J\eta) = \mathcal{E}(\eta, \xi)$ for all $\xi, \eta \in D(\mathcal{E})$.

A J-real, real-valued, densely defined quadratic form $(\mathcal{E}, D(\mathcal{E}))$ is called Markovian (with respect to ξ_0) if

$$\xi \in D(\mathcal{E}) \cap \mathcal{H}^J \Rightarrow \xi_I \in D(\mathcal{E}), \quad \mathcal{E}[\xi_I] \leq \mathcal{E}[\xi].$$

A closed Markovian form is called a *Dirichlet form*.

For a positive closed form $(\mathcal{E}, D(\mathcal{E}))$, there exists a positive self-adjoint operator (H, D(H)) such that

$$\mathcal{E}(\xi,\eta) = \langle \xi, H\eta \rangle, \ \xi, \ \eta \in D(\mathcal{E}),$$

and a strongly continuous, symmetric semigroup $\{T_t\}_{t\geq 0}, T_t = e^{-tH}$. Moreover, when $(\mathcal{E}, D(\mathcal{E}))$ is a Dirichlet form, H is called a Dirichlet operator. For the details, see Section 3.1 of [4].

In [9], the author has used the notion of admissible function to construct Dirichlet forms.

Definition 2.1. An analytic function $f: D \to \mathbb{C}$ on a domain D containing the strip Im $z \in [-1/4, 1/4]$ is said to be *admissible* if the following properties hold:

- (a) $f(t) \ge 0$ for all $t \in \mathbb{R}$,
- (b) $f(t+i/4) + f(t-i/4) \ge 0$ for all $t \in \mathbb{R}$,
- (c) there exist M > 0 and p > 1 such that the bound

$$|f(t+is)| \le M(1+|t|)^{-p}$$

holds uniformly in $s \in [-1/4, 1/4]$.

The function g(t) given by

(2.2)
$$g(t) = \frac{2}{\sqrt{2\pi}} \int (e^{k/4} + e^{-k/4})^{-1} e^{-\frac{1}{2}k^2} e^{-ikt} dk$$

is admissible. See the proof of Lemma 3.1 of [9].

Using a fixed admissible function f and $x \in \mathcal{M}$ satisfying the condition $\sup_{s \in [-1/4, 1/4]} || \sigma_{t+is}(x)|| \leq M$ for some M > 0 uniformly $t \in \mathbb{R}$, the following

(bounded) Dirichlet form $(\mathcal{E}, \mathcal{H})$ was constructed in [3, 9]:

(2.3)
$$\mathcal{E}(\eta,\xi) = \int \left\langle \left[\sigma_{t-i/4}(x) - j \left(\sigma_{t-i/4}(x^*) \right) \right] \eta, \\ \left[\sigma_{t-i/4}(x) - j \left(\sigma_{t-i/4}(x^*) \right) \right] \xi \right\rangle f(t) dt \\ + \int \left\langle \left[\sigma_{t-i/4}(x^*) - j \left(\sigma_{t-i/4}(x) \right) \right] \eta, \\ \left[\sigma_{t-i/4}(x^*) - j \left(\sigma_{t-i/4}(x) \right) \right] \xi \right\rangle f(t) dt.$$

Putting $x = \frac{1}{\sqrt{2}}(x_1 + ix_2), x_1 = x_1^*, x_2 = x_2^* \in \mathcal{M}$, the above form $(\mathcal{E}, \mathcal{H})$ can be rewritten as

(2.4)
$$\mathcal{E}(\eta,\xi) = \int \langle \left[\sigma_{t-i/4}(x_1) - j \left(\sigma_{t-i/4}(x_1) \right) \right] \eta, \\ \left[\sigma_{t-i/4}(x_1) - j \left(\sigma_{t-i/4}(x_1) \right) \right] \xi \rangle f(t) dt \\ + \int \langle \left[\sigma_{t-i/4}(x_2) - j \left(\sigma_{t-i/4}(x_2) \right) \right] \eta, \\ \left[\sigma_{t-i/4}(x_2) - j \left(\sigma_{t-i/4}(x_2) \right) \right] \xi \rangle f(t) dt$$

84

for any $\eta, \xi \in \mathcal{H}$. Thus the (bounded) Dirichlet operator H associated with $(\mathcal{E}, \mathcal{H})$ is

$$H = \int [\sigma_{t+i/4}(x_1) - j(\sigma_{t+i/4}(x_1))] [\sigma_{t-i/4}(x_1) - j(\sigma_{t-i/4}(x_1))] f(t) dt + \int [\sigma_{t+i/4}(x_2) - j(\sigma_{t+i/4}(x_2))] [\sigma_{t-i/4}(x_2) - j(\sigma_{t-i/4}(x_2))] f(t) dt.$$

Notice that $j(B) = JBJ \in \mathcal{M}'$ and $JB\xi_0 = \Delta^{1/2}B^*\xi_0$ for any $B \in \mathcal{M}$. Using the symmetric embedding map, define the operator G on \mathcal{M} given by

 $\Delta^{1/4}G(A)\xi_0 = H\Delta^{1/4}A\xi_0, \ A \in \mathcal{M},$

and the semigroup $S_t = e^{-tG}$ on \mathcal{M} . Then

(2.5)
$$G(A) = \int G(A,t)f(t)dt$$
$$\equiv \int [G_1(A,t) + G_2(A,t)]f(t)dt$$

where

$$G_{1}(A,t) = \sigma_{t+i/2}(x_{1})\sigma_{t}(x_{1})A + A\sigma_{t}(x_{1})\sigma_{t-i/2}(x_{1}) -\sigma_{t+i/2}(x_{1})A\sigma_{t}(x_{1}) - \sigma_{t}(x_{1})A\sigma_{t-i/2}(x_{1})$$

and

$$G_{2}(A,t) = \sigma_{t+i/2}(x_{2})\sigma_{t}(x_{2})A + A\sigma_{t}(x_{2})\sigma_{t-i/2}(x_{2}) -\sigma_{t+i/2}(x_{2})A\sigma_{t}(x_{2}) - \sigma_{t}(x_{2})A\sigma_{t-i/2}(x_{2}).$$

The operator G is a generator of the KMS-symmetric Markovian semigroup $\{S_t\}$ associated to $x \in \mathcal{M}$. See Remark 2.1 of [3] and Theorem 2.12 of [6].

3. Invariant subspaces

In this section we give the sufficient and necessary conditions for x used to construct the semigroup $\{S_t\}$ in Section 2 so that the semigroup acts separately on diagonal and off-diagonal operators with respect to a basis, and study some results.

Let \mathfrak{h} be a complex separable Hilbert space and let $L(\mathfrak{h})$ be the von Neumann algebra of all bounded operators on \mathfrak{h} . The faithful, normal, semifinite trace on $L(\mathfrak{h})$ is denoted by Tr. The Hilbert-Schmidt class $L^2(\mathfrak{h})$ is a Hilbert space with the inner product $\langle \xi, \eta \rangle = \text{Tr}(\xi^*\eta)$. Consider the faithful, normal representation π_L of $L(\mathfrak{h})$ given by

$$\pi_L: L(\mathfrak{h}) \longrightarrow \mathcal{L}(L^2(\mathfrak{h})), \ \pi_L(x) = L_x,$$

where L_x is the left multiplication operator, $\xi \mapsto x\xi$. Put $\mathcal{M}(=\mathcal{L}^{\infty}) = \pi_L(L(\mathfrak{h}))$.

The closed convex cone $L^2_+(\mathfrak{h})$ in $L^2(\mathfrak{h})$ consisting of nonnegative Hilbert-Schmidt operators is a self-dual cone in the sense that

$$L^2_+(\mathfrak{h}) = \{\xi \in L^2(\mathfrak{h}) : \langle \xi, \eta \rangle \ge 0 \ \forall \eta \in L^2_+(\mathfrak{h}) \}.$$

The associated antiunitary conjugation J on $L^2(\mathfrak{h})$ is simply the adjoint operator on $L^2(\mathfrak{h})$: $J\xi = \xi^*$. Then $(\mathcal{M}, L^2(\mathfrak{h}), L^2_+(\mathfrak{h}), *)$ is a standard form for $L(\mathfrak{h})$.

The following notation remains highly convenient. For vectors $e, f \in \mathfrak{h}$, let $|e\rangle\langle f|$ denote the operator on \mathfrak{h} given by $|e\rangle\langle f|v = \langle f, v\rangle e$. Thus $|e\rangle\langle f|$ is one rank operator on \mathfrak{h} and so $|e\rangle\langle f| \in L(\mathfrak{h})$.

Now let $\{e_k\}_{k=0}^{\infty}$ be an orthonormal basis of \mathfrak{h} . Let ρ , ω and ξ_0 be a strictly positive density matrix, the corresponding normal state and the corresponding cyclic and separating vector, respectively:

$$\begin{split} \rho &= \sum_{k=0}^{\infty} r_k |e_k\rangle \langle e_k|, \ r_k > 0 \ \text{and} \ \sum_{k=0}^{\infty} r_k = 1, \\ \omega(L_x) &= \operatorname{Tr}(\rho x) = \langle \xi_0, x \xi_0 \rangle, \\ \xi_0 &= \rho^{1/2} = \sum_{k=0}^{\infty} r_k^{1/2} |e_k\rangle \langle e_k|. \end{split}$$

The action of the associated modular operator and the modular group are given by

$$\begin{aligned} \Delta^{1/2} L_x \xi_0 &= \rho^{1/2} x, \ x \in L(\mathfrak{h}), \\ \sigma_t(L_x) &= L_{\rho^{it} x \rho^{-it}}. \end{aligned}$$

Since π_L is a monomorphism, we identify $\mathcal{M} = \mathcal{L}^{\infty}$ with $L(\mathfrak{h})$. We will write the above second term as $\sigma_t(x) = \rho^{it} x \rho^{-it}$.

Consider a fixed element $x \in \mathcal{M}$ such that

(3.1)
$$x = \sum_{l,m \ge 0} x_{lm} |e_m\rangle \langle e_l|, x_{lm} \in \mathbb{C},$$

and let

$$\begin{aligned} x_1 &= \frac{1}{\sqrt{2}}(x+x^*) = \sum_{l,m\geq 0} \frac{x_{lm} + \overline{x_{ml}}}{\sqrt{2}} |e_m\rangle \langle e_l| \equiv \sum_{l,m\geq 0} y_{lm} |e_m\rangle \langle e_l|, \\ x_2 &= \frac{1}{\sqrt{2}i}(x-x^*) = \sum_{l,m\geq 0} \frac{x_{lm} - \overline{x_{ml}}}{\sqrt{2}i} |e_m\rangle \langle e_l| \equiv \sum_{l,m\geq 0} z_{lm} |e_m\rangle \langle e_l|. \end{aligned}$$

Then $x_1^* = x_1$, $x_2^* = x_2$ and $x = x_1 + ix_2$. Assume that

(3.2)
$$\sup_{0 \le s \le 1/2} \sum_{l,m \ge 0} r_m^{-s} r_l^s |x_{lm}| < \infty.$$

86

In case $\sup_l \operatorname{Card}(\{m | x_{lm} \neq 0\}) < \infty,$ the assumption (3.2) is reduced to the condition

$$\sup_{0 \le s \le 1/2} \sum_{l \ge 0} r_l^s |x_{lm}| < \infty.$$

It follows from (3.2) that for all $t \in \mathbb{R}$ and $s \in [-1/2, 1/2]$, $\sigma_{t+is}(x)$ is bounded and

(3.3)
$$\sigma_{t+is}(x) = \rho^{it-s} x \rho^{-it+s}$$
$$= \sum_{l,m \ge 0} r_m^{it-s} r_l^{-it+s} x_{lm} |e_m\rangle \langle e_l|.$$

Lemma 3.1. For each $A = |e_k\rangle \langle e_n|$, we have the following relations: for all $t \in \mathbb{R}$,

$$\begin{split} \sigma_{t+i/2}(x_1)\sigma_t(x_1)A &= \sum_{l,m\geq 0} r_m^{it-1/2} r_l^{1/2} r_k^{-it} y_{lm} y_{kl} |e_m\rangle \langle e_n|, \\ A\sigma_t(x_1)\sigma_{t-i/2}(x_1) &= \sum_{l,m\geq 0} r_n^{it} r_m^{1/2} r_l^{-it-1/2} y_{mn} y_{lm} |e_k\rangle \langle e_l|, \\ \sigma_{t+i/2}(x_1)A\sigma_t(x_1) &= \sum_{l,m\geq 0} r_m^{it-1/2} r_k^{-it+1/2} r_n^{it} r_l^{-it} y_{km} y_{ln} |e_m\rangle \langle e_l|, \\ \sigma_t(x_1)A\sigma_{t-i/2}(x_1) &= \sum_{l,m\geq 0} r_m^{it} r_k^{-it} r_n^{it+1/2} r_l^{-it-1/2} y_{km} y_{ln} |e_m\rangle \langle e_l|, \end{split}$$

and

$$\begin{aligned} \sigma_{t+i/2}(x_2)\sigma_t(x_2)A &= \sum_{l,m\geq 0} r_m^{it-1/2} r_l^{1/2} r_k^{-it} z_{lm} z_{kl} |e_m\rangle \langle e_n|, \\ A\sigma_t(x_2)\sigma_{t-i/2}(x_2) &= \sum_{l,m\geq 0} r_n^{it} r_m^{1/2} r_l^{-it-1/2} z_{mn} z_{lm} |e_k\rangle \langle e_l|, \\ \sigma_{t+i/2}(x_2)A\sigma_t(x_2) &= \sum_{l,m\geq 0} r_m^{it-1/2} r_k^{-it+1/2} r_n^{it} r_l^{-it} z_{km} z_{ln} |e_m\rangle \langle e_l|, \\ \sigma_t(x_2)A\sigma_{t-i/2}(x_2) &= \sum_{l,m\geq 0} r_m^{it} r_k^{-it} r_n^{it+1/2} r_l^{-it-1/2} z_{km} z_{ln} |e_m\rangle \langle e_l|. \end{aligned}$$

Proof. This is clear from (3.3).

87

Applying Lemma 3.1 to (2.5), we have the concrete action of the generator G:

(3.4)
$$G(A) = \int G(A,t)f(t)dt, \quad A = |e_k\rangle \langle e_n|,$$

where

$$\begin{split} G(A,t) &= \sum_{l,m\geq 0} r_{m}^{it} r_{k}^{-it} \sqrt{\frac{r_{l}}{r_{m}}} (y_{lm}y_{kl} + z_{lm}z_{kl}) |e_{m}\rangle \langle e_{n}| \\ &+ \sum_{l,m\geq 0} r_{n}^{it} r_{l}^{-it} \sqrt{\frac{r_{m}}{r_{l}}} (y_{mn}y_{lm} + z_{mn}z_{lm}) |e_{k}\rangle \langle e_{l}| \\ &- \sum_{l,m\geq 0} r_{m}^{it} r_{k}^{-it} r_{n}^{it} r_{l}^{-it} \sqrt{\frac{r_{k}}{r_{m}}} (y_{km}y_{ln} + z_{km}z_{ln}) |e_{m}\rangle \langle e_{l}| \\ &- \sum_{l,m\geq 0} r_{m}^{it} r_{k}^{-it} r_{n}^{it} r_{l}^{-it} \sqrt{\frac{r_{n}}{r_{l}}} (y_{km}y_{ln} + z_{km}z_{ln}) |e_{m}\rangle \langle e_{l}| \\ &= \sum_{l,m\geq 0} r_{m}^{it} r_{k}^{-it} \sqrt{\frac{r_{l}}{r_{m}}} (x_{lm}\overline{x_{lk}} + \overline{x_{ml}}x_{kl}) |e_{m}\rangle \langle e_{n}| \\ &+ \sum_{l,m\geq 0} r_{n}^{it} r_{l}^{-it} \sqrt{\frac{r_{m}}{r_{l}}} (x_{mn}\overline{x_{ml}} + \overline{x_{mm}}x_{lm}) |e_{k}\rangle \langle e_{l}| \\ &- \sum_{l,m\geq 0} r_{m}^{it} r_{k}^{-it} r_{n}^{it} r_{l}^{-it} \left(\sqrt{\frac{r_{k}}{r_{m}}} + \sqrt{\frac{r_{n}}{r_{l}}} \right) (x_{km}\overline{x_{nl}} + \overline{x_{mk}}x_{ln}) |e_{m}\rangle \langle e_{l}|. \end{split}$$

Now we fix the admissible function f given by

$$f(t) = \frac{1}{\sqrt{2\pi}}g = \frac{1}{\pi}\int (e^{k/4} + e^{-k/4})^{-1}e^{-\frac{1}{2}k^2}e^{-ikt}\,dk,$$

where g is defined as in (2.2). Notice that g is the Fourier transform of $h(k) = 2(e^{k/4} + e^{-k/4})^{-1}e^{-\frac{1}{2}k^2}$. Thus

(3.5)
$$\int f(t)e^{ipt} dt = 2(e^{p/4} + e^{-p/4})^{-1}e^{-\frac{1}{2}p^2}$$
$$= \operatorname{sech}(\frac{p}{4})e^{-\frac{1}{2}p^2}$$

for any $p\in\mathbb{R}.$ Applying (3.5) to (3.4), the generator G can be written as, for $A=|e_k\rangle\langle e_n|,$

$$G(A) = \sum_{l,m\geq 0} \operatorname{sech}(\frac{1}{4}\ln\frac{r_m}{r_k}) e^{-\frac{1}{2}(\ln\frac{r_m}{r_k})^2} \sqrt{\frac{r_l}{r_m}} (x_{lm}\overline{x_{lk}} + \overline{x_{ml}}x_{kl}) |e_m\rangle\langle e_n|$$

$$+ \sum_{l,m\geq 0} \operatorname{sech}(\frac{1}{4}\ln\frac{r_n}{r_l}) e^{-\frac{1}{2}(\ln\frac{r_n}{r_l})^2} \sqrt{\frac{r_m}{r_l}} (x_{mn}\overline{x_{ml}} + \overline{x_{nm}}x_{lm}) |e_k\rangle\langle e_l|$$

$$- \sum_{l,m\geq 0} \operatorname{sech}(\frac{1}{4}\ln\frac{r_mr_n}{r_kr_l}) e^{-\frac{1}{2}(\ln\frac{r_mr_n}{r_kr_l})^2} \left(\sqrt{\frac{r_k}{r_m}} + \sqrt{\frac{r_n}{r_l}}\right)$$

$$(3.6) \qquad \times (x_{km}\overline{x_{nl}} + \overline{x_{mk}}x_{ln}) |e_m\rangle\langle e_l|.$$

88

Consider two conditions for the sequence $\{x_{lm}\}_{l,m\geq 0}$ of the complex numbers:

(3.7) $x_{km}\overline{x_{kl}} + \overline{x_{mk}}x_{lk} = 0, \ l \neq m, l \neq k, \ m \neq k,$

(3.8)
$$x_{mm}\overline{x_{mk}} + \overline{x_{mm}}x_{km} = x_{km}\overline{x_{kk}} + \overline{x_{mk}}x_{kk}, \ m \neq k$$

for all k.

Lemma 3.2. Let the sequence $\{x_{lm}\}_{l,m\geq 0}$ of the complex numbers satisfy the above condition (3.7). Then for each k there exist at most three nonzero elements $x_{kl_1}, x_{kl_2}, x_{kk}, l_1, l_2 \neq k$ of $\{x_{km}\}_{m\geq 0}$ and at most nonzero three elements $x_{l_3k}, x_{l_4k}, x_{kk}, l_3, l_4 \neq k$ of $\{x_{mk}\}_{m>0}$.

Proof. Suppose that there exist three nonzero elements $x_{kl_1}, x_{kl_2}, x_{kl_3}$ such that $l_1, l_2, l_3 \neq k$ are mutually different. It follows from (3.7) that we have $x_{l_1k}, x_{l_2k}, x_{l_3k} \neq 0$ and

$$\begin{aligned} x_{kl_1}\overline{x_{kl_2}} + \overline{x_{l_1k}}x_{l_2k} &= 0, \\ x_{kl_1}\overline{x_{kl_3}} + \overline{x_{l_1k}}x_{l_3k} &= 0, \\ x_{kl_2}\overline{x_{kl_3}} + \overline{x_{l_2k}}x_{l_3k} &= 0. \end{aligned}$$

Then $\frac{x_{kl_1}}{\overline{x_{l_1k}}} = -\frac{x_{l_2k}}{\overline{x_{kl_2}}} = -\frac{x_{l_3k}}{\overline{x_{kl_3}}}, \quad \frac{\overline{x_{l_2k}}}{\overline{x_{l_2k}}} = -\frac{\overline{x_{kl_3}}}{\overline{x_{l_3k}}}, \text{ which implies } \frac{x_{l_3k}}{\overline{x_{kl_3}}} = -\frac{x_{kl_3}}{\overline{x_{l_3k}}}, \text{ that is, } |x_{l_3k}|^2 = -|x_{kl_3}|^2 \text{ and } x_{l_3k} = x_{kl_3} = 0. \text{ This is a contradiction. There does not exist nonzero elements } x_{kl_1}, x_{kl_2}, x_{kl_3} \text{ such that } l_1, l_2, l_3 \neq k) \text{ are mutually different.}$

The other part will be proved similarly.

By Lemma 3.2, rearranging the orthonormal basis $\{e_k\}_{k\geq 0}$, the operator x satisfying (3.7) can be expressed as the following matrix form:

	(x_{00})	x_{01}	x_{02}	0	0	0	0)	
x =	x_{10}	x_{11}	0	x_{13}	0	0	0		
	x_{20}	0	x_{22}	0	x_{24}	0	0		
	0	x_{31}	0	x_{33}	0	x_{35}	0		
	0	0	x_{42}	0	x_{44}	0	x_{46}		
	0	0	0	x_{53}	0	x_{55}	0		
	0	0	0	0	x_{64}	0	x_{66}		
	(.	•	•	•	•	•	•	· · · /	

We call the operator of \mathcal{M} of the form $\sum_{k\geq 0} w_k |e_k\rangle \langle e_k|, w_k \in \mathbb{C}$ the diagonal operator and $x \in \mathcal{M}$ satisfying $\operatorname{Tr}(x|e_n\rangle \langle e_n|) = 0$ for all n the off-diagonal operator. Let \mathcal{M}_d be the (diagonal) subalgebra consisting of the diagonal operators and \mathcal{M}_{od} the space of off-diagonal elements. Every operator in \mathcal{M} is expressed as the sum of the diagonal operator and off-diagonal operator.

Theorem 3.3. Let $x = \sum_{l,m\geq 0} x_{lm} |e_m\rangle \langle e_l|$ satisfy the assumption (3.2) and $\{S_t\}_{t\geq 0}$ be the semigroup with generator G in (3.6) (and (3.4)). x satisfies two

conditions (3.7) and (3.8) if and only if \mathcal{M}_d and \mathcal{M}_{od} are S_t -invariant for all $t \geq 0$, that is, $S_t(\mathcal{M}_d) \subset \mathcal{M}_d$ and $S_t(\mathcal{M}_{od}) \subset \mathcal{M}_{od}$.

Proof. For $A = |e_k\rangle\langle e_k| \in \mathcal{M}_d$, we get from (3.6) that

$$G(A) = \sum_{l,m\geq 0} \operatorname{sech}(\frac{1}{4}\ln\frac{r_m}{r_k})e^{-\frac{1}{2}(\ln\frac{r_m}{r_k})^2}\sqrt{\frac{r_l}{r_m}}(x_{lm}\overline{x_{lk}} + \overline{x_{ml}}x_{kl})|e_m\rangle\langle e_k|$$

$$+ \sum_{l,m\geq 0}\operatorname{sech}(\frac{1}{4}\ln\frac{r_k}{r_l})e^{-\frac{1}{2}(\ln\frac{r_k}{r_l})^2}\sqrt{\frac{r_m}{r_l}}(x_{mk}\overline{x_{ml}} + \overline{x_{km}}x_{lm})|e_k\rangle\langle e_l|$$

$$- \sum_{l,m\geq 0}\operatorname{sech}(\frac{1}{4}\ln\frac{r_m}{r_l})e^{-\frac{1}{2}(\ln\frac{r_m}{r_l})^2}\left(\sqrt{\frac{r_k}{r_m}} + \sqrt{\frac{r_k}{r_l}}\right)$$

$$\times (x_{km}\overline{x_{kl}} + \overline{x_{mk}}x_{lk})|e_m\rangle\langle e_l|.$$
(3.9)

We rewrite in detail as

$$\begin{split} & G(A) \\ = \sum_{l \ge 0} \sqrt{\frac{r_l}{r_k}} (|x_{lk}|^2 + |x_{kl}|^2) |e_k\rangle \langle e_k| \\ &+ \sum_{\substack{m \ne k \\ m \ge 0}} \operatorname{sech}(\frac{1}{4} \ln \frac{r_m}{r_k}) e^{-\frac{1}{2} (\ln \frac{r_m}{r_k})^2} \sum_{l \ge 0} \sqrt{\frac{r_l}{r_m}} (x_{lm} \overline{x_{lk}} + \overline{x_{ml}} x_{kl}) |e_m\rangle \langle e_k| \\ &+ \sum_{\substack{m \ge 0 \\ l \ge 0}} \sqrt{\frac{r_m}{r_k}} (|x_{mk}|^2 + |x_{km}|^2) |e_k\rangle \langle e_k| \\ &+ \sum_{\substack{l \ne k \\ l \ge 0}} \operatorname{sech}(\frac{1}{4} \ln \frac{r_k}{r_l}) e^{-\frac{1}{2} (\ln \frac{r_k}{r_l})^2} \sum_{m \ge 0} \sqrt{\frac{r_m}{r_l}} (x_{mk} \overline{x_{ml}} + \overline{x_{km}} x_{lm}) |e_k\rangle \langle e_l| \\ &- 2 \sum_{\substack{l \ge 0 \\ l \ge 0}} \sqrt{\frac{r_k}{r_l}} (|x_{kl}|^2 + |x_{lk}|^2) |e_l\rangle \langle e_l| \\ &- \sum_{\substack{m \ne k \\ m \ge 0}} \operatorname{sech}(\frac{1}{4} \ln \frac{r_m}{r_k}) e^{-\frac{1}{2} (\ln \frac{r_m}{r_k})^2} \left(\sqrt{\frac{r_k}{r_m}} + 1\right) (x_{km} \overline{x_{kk}} + \overline{x_{mk}} x_{kk}) |e_m\rangle \langle e_k| \\ &- \sum_{\substack{l \ne k \\ m \ge 0}} \operatorname{sech}(\frac{1}{4} \ln \frac{r_k}{r_l}) e^{-\frac{1}{2} (\ln \frac{r_m}{r_l})^2} \left(1 + \sqrt{\frac{r_k}{r_l}}\right) (x_{kk} \overline{x_{kl}} + \overline{x_{kk}} x_{lk}) |e_k\rangle \langle e_l| \\ &- \sum_{\substack{l \ne m \\ l \ge 0}} \operatorname{sech}(\frac{1}{4} \ln \frac{r_m}{r_l}) e^{-\frac{1}{2} (\ln \frac{r_m}{r_l})^2} \left(\sqrt{\frac{r_k}{r_m}} + \sqrt{\frac{r_k}{r_l}}\right) \\ &- \sum_{\substack{l \ne m \\ l \ge 0}} \operatorname{sech}(\frac{1}{4} \ln \frac{r_m}{r_l}) e^{-\frac{1}{2} (\ln \frac{r_m}{r_l})^2} \left(\sqrt{\frac{r_k}{r_m}} + \sqrt{\frac{r_k}{r_l}}\right) \end{split}$$

 $(3.10) \times (x_{km}\overline{x_{kl}} + \overline{x_{mk}}x_{lk})|e_m\rangle\langle e_l|.$

91

For $B = |e_k\rangle \langle e_n|, \ k \neq n$ in \mathcal{M}_{od} , we also get

$$\begin{aligned} G(B) \\ &= \operatorname{sech}(\frac{1}{4}\ln\frac{r_n}{r_k})e^{-\frac{1}{2}(\ln\frac{r_n}{r_k})^2}\sum_{l\geq 0}\sqrt{\frac{r_l}{r_n}}(x_{ln}\overline{x_{lk}}+\overline{x_{nl}}x_{kl})|e_n\rangle\langle e_n| \\ &+\sum_{\substack{m\neq n\\m\geq 0}}\operatorname{sech}(\frac{1}{4}\ln\frac{r_m}{r_k})e^{-\frac{1}{2}(\ln\frac{r_m}{r_k})^2}\sum_{l\geq 0}\sqrt{\frac{r_l}{r_m}}(x_{lm}\overline{x_{lk}}+\overline{x_{ml}}x_{kl})|e_m\rangle\langle e_n| \\ &+\operatorname{sech}(\frac{1}{4}\ln\frac{r_n}{r_k})e^{-\frac{1}{2}(\ln\frac{r_n}{r_k})^2}\sum_{m\geq 0}\sqrt{\frac{r_m}{r_k}}(x_{mn}\overline{x_{mk}}+\overline{x_{nm}}x_{km})|e_k\rangle\langle e_k| \\ &+\sum_{\substack{l\neq k\\l\geq 0}}\operatorname{sech}(\frac{1}{4}\ln\frac{r_n}{r_k})e^{-\frac{1}{2}(\ln\frac{r_n}{r_k})^2}\sum_{m\geq 0}\sqrt{\frac{r_m}{r_l}}(x_{mn}\overline{x_{ml}}+\overline{x_{nm}}x_{lm})|e_k\rangle\langle e_l| \\ &-\operatorname{sech}(\frac{1}{4}\ln\frac{r_n}{r_k})e^{-\frac{1}{2}(\ln\frac{r_n}{r_k})^2}\sum_{l\geq 0}\left(\sqrt{\frac{r_k}{r_l}}+\sqrt{\frac{r_n}{r_l}}\right)(x_{kl}\overline{x_{nl}}+\overline{x_{lk}}x_{ln})|e_l\rangle\langle e_l| \\ &-\sum_{\substack{l\neq m\\m\geq 0}}\operatorname{sech}(\frac{1}{4}\ln\frac{r_mr_n}{r_kr_l})e^{-\frac{1}{2}(\ln\frac{r_mr_n}{r_kr_l})^2}\left(\sqrt{\frac{r_k}{r_m}}+\sqrt{\frac{r_n}{r_l}}\right) \\ (3.11) \quad \times(x_{km}\overline{x_{nl}}+\overline{x_{mk}}x_{ln})|e_m\rangle\langle e_l|. \end{aligned}$$

By (3.10) and (3.11), $G(A) \in \mathcal{M}_d$ and $G(B) \in \mathcal{M}_{od}$ if and only if the following relations hold:

$$\begin{aligned} x_{km}\overline{x_{kl}} + \overline{x_{mk}}x_{lk} &= 0, \ l \neq m, \ l \neq k, \ m \neq k, \\ \sum_{l \ge 0} \sqrt{\frac{r_l}{r_m}} (x_{lm}\overline{x_{lk}} + \overline{x_{ml}}x_{kl}) &= \left(\sqrt{\frac{r_k}{r_m}} + 1\right) (x_{km}\overline{x_{kk}} + \overline{x_{mk}}x_{kk}), \ m \neq k, \\ \sum_{m \ge 0} \sqrt{\frac{r_m}{r_l}} (x_{mk}\overline{x_{ml}} + \overline{x_{km}}x_{lm}) &= \left(1 + \sqrt{\frac{r_k}{r_l}}\right) (x_{kk}\overline{x_{kl}} + \overline{x_{kk}}x_{lk}), \ l \neq k \end{aligned}$$

for all k. The above relations are reduced to (3.7) and (3.8). In this case we have

(3.12)
$$G(A) = 2\sum_{l\geq 0} \sqrt{\frac{r_l}{r_k}} (|x_{lk}|^2 + |x_{kl}|^2) |e_k\rangle \langle e_k| -2\sum_{l\geq 0} \sqrt{\frac{r_k}{r_l}} (|x_{kl}|^2 + |x_{lk}|^2) |e_l\rangle \langle e_l|,$$

$$G(B)$$

$$= \sum_{\substack{m \neq n \\ m \geq 0}} \operatorname{sech}(\frac{1}{4} \ln \frac{r_m}{r_k}) e^{-\frac{1}{2}(\ln \frac{r_m}{r_k})^2} \sum_{l \geq 0} \sqrt{\frac{r_l}{r_m}} (x_{lm} \overline{x_{lk}} + \overline{x_{ml}} x_{kl}) |e_m\rangle \langle e_n|$$

$$+ \sum_{\substack{l \neq k \\ l \geq 0}} \operatorname{sech}(\frac{1}{4} \ln \frac{r_n}{r_k}) e^{-\frac{1}{2}(\ln \frac{r_n}{r_k})^2} \sum_{m \geq 0} \sqrt{\frac{r_m}{r_l}} (x_{mn} \overline{x_{ml}} + \overline{x_{nm}} x_{lm}) |e_k\rangle \langle e_l|$$

$$- \sum_{\substack{l \neq m \\ m \geq 0}} \operatorname{sech}(\frac{1}{4} \ln \frac{r_m r_n}{r_k r_l}) e^{-\frac{1}{2}(\ln \frac{r_m r_n}{r_k r_l})^2} \left(\sqrt{\frac{r_k}{r_m}} + \sqrt{\frac{r_n}{r_l}}\right)$$

$$\times (x_{km} \overline{x_{nl}} + \overline{x_{mk}} x_{ln}) |e_m\rangle \langle e_l|,$$

which implies $S_t(\mathcal{M}_d) \subset \mathcal{M}_d$, $S_t(\mathcal{M}_{od}) \subset \mathcal{M}_{od}$. The proof is completed. \Box

Remark 3.4. Since $\sigma_t(A) = A$ for all $A \in \mathcal{M}_d$ and $t \in \mathbb{R}$ there exists a projection $(\sigma_t$ -compatible conditional expectation) $P_{\mathcal{M}_d}$ of \mathcal{M} onto \mathcal{M}_d (Proposition 2.6.6 of [11]). The subalgebra \mathcal{M}_d and the space \mathcal{M}_{od} are invariant for the semigroup $\{S_t\}_{t\geq 0}$ in Theorem 3.3. So the restriction $S_t^d := S_t|_{\mathcal{M}_d}$ of S_t on \mathcal{M}_d is also a semigroup and

$$S_t^d(P_{\mathcal{M}_d}(A)) = P_{\mathcal{M}_d}(S_t(A))$$

for all $A \in \mathcal{M}$.

Notice that the semigroup $\{S_t\}_{\geq 0}$ is a KMS-symmetric semigroup on \mathcal{M} (see (2.1)) and $S_t(\mathbf{1}) = \mathbf{1}$ for all $t \geq 0$, and so $\{S_t\}_{t\geq 0}$ is ρ -invariant in the sense that

$$\operatorname{Tr}(\rho S_t(A)) = \operatorname{Tr}(\rho A), \ A \in \mathcal{M}.$$

Theorem 3.5. Let $\{S_t\}_{t\geq 0}$ be the semigroup with generator G in (3.6) associate to $x \in \mathcal{M}_d$ as in (3.1).

(a) $S_t(A) = A$ for all $A \in \mathcal{M}_d$ and $t \ge 0$.

(b) A density matrix $\tilde{\rho} = \sum_{k\geq 0} \tilde{r_k} |e_k\rangle \langle e_k|$ is an invariant state for $\{S_t\}_{\geq 0}$, that is, $Tr(\tilde{\rho}S_t(A)) = Tr(\tilde{\rho}A)$ for all $A \in \mathcal{M}$ and all $t \geq 0$.

Proof. (a) By (3.9), we have G(A) = 0, which is equivalent to $S_t(A) = A$ for all $A \in \mathcal{M}_d$.

(b) Let $A \in \mathcal{M}$. Then $A \in \mathcal{M}$ can be written as the sum $A = A_d + A_{od}$ with $A_d \in \mathcal{M}_d$ and $A_{od} \in \mathcal{M}_{od}$. Since $x \in \mathcal{M}_d$, we get from (a) that $S_t(A_d) = A_d$ for all $t \ge 0$. By $S_t(A_{od}) \in \mathcal{M}_{od}$ for all $t \ge 0$, we have $\operatorname{Tr}(\tilde{\rho}S_t(A_{od})) = 0$ and so

$$\operatorname{Tr}(\tilde{\rho}S_t(A)) = \operatorname{Tr}(\tilde{\rho}S_t(A_d)) = \operatorname{Tr}(\tilde{\rho}A_d) = \operatorname{Tr}(\tilde{\rho}A)$$

for all $t \ge 0$. The proof is completed.

92

and

References

- L. Accardi, F. Fagnola, and S. Hachicha, Generic q-Markov semigroups and speed of convergence of q-algorithms, Inf. Dim. Anal. Quantum Probab. Related Topics 9 (2006), 567–594.
- [2] S. Albeverio and R. Høegh-Krohn, Dirichlet forms and Markovian semigroups on C^{*}algebras, Comm. Math. Phys. 56 (1977), 173–187.
- [3] C. Bahn, C. K. Ko, and Y. M. Park, Dirichlet forms and symmetric Markovian semigroups on CCR algebras with quasi-free states, J. Math. Phys. 44 (2003), 723–753.
- [4] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics, Springer-Verlag, New York-Heidelberg-Berlin, vol I (1979), vol. II (1981).
- [5] R. Carbone, F. Fagnola, and S. Hachicha, *Generic quantum Markov semigroups: the Gaussian gauge invariant case*, priprint.
- [6] F. Cipriani, Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebras, J. Funct. Anal. 147 (1997), 259–300.
- [7] F. Cipriani, F. Fagnola, and J. M. Lindsay, Spectral Analysis and Feller Properties for Quantum Ornstein-Uhlenbeck Semigroups, Comm. Math. Phys. 210 (2000), 85–105.
- [8] F. Fagnola and R. Quezada, Two-photon and emission process, Inf. Dim. Anal. Quantum Probab. Related Topics 8 (2005), 573–591.
- [9] Y. M. Park, Construction of Dirichlet forms on standard forms of von Neumann algebras, Inf. Dim. Anal. Quantum Probab. Related Topics 3 (2000), 1–14.
- [10] K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Birkhäuser, Basel, 1992.
- [11] V. S. Sunder, An Invitation to von Neumann Algebras, Springer-Verlag, Newyork Berlin Heidelberg London Paris Tokyo, 1986.

VENI CHOI DIVISION OF GENERAL STUDIES AJOU UNIVERSITY SUWON 443-749, KOREA *E-mail address:* veni@ajou.ac.kr

CHUL KI KO UNIVERSITY COLLEGE YONSEI UNIVERSITY SEOUL 120-749, KOREA *E-mail address:* kochulki@yonsei.ac.kr