Commun. Korean Math. Soc. 23 (2008), No. 1, pp. 81-93

A REMARK ON INVARIANCE OF QUANTUM MARKOV
SEMIGROUPS

VENI CHO1 AND CHUL K1 Ko

ABSTRACT. In [3, 9], using the theory of noncommutative Dirichlet forms
in the sense of Cipriani [6] and the symmetric embedding map, authors
constructed the KMS-symmetric Markovian semigroup {St};>0 on a von
Neumann algebra M with an admissible function f and an operator
z € M. We give a sufficient and necessary condition for = so that the
semigroup {St}+>0 acts separately on diagonal and off-diagonal operators
with respect to a basis and study some results.

1. Introduction

A quantum Markov semigroup on the algebra L(h) of all bounded operators
on a complex separable Hilbert space b is a semigroup {S;}:>o of completely
positive, identity preserving and normal maps on L(h) [6]. Quantum Markov
semigroups are the natural generalization of classical Markov semigroups and
were introduced in physics to model the decay equilibrium of quantum open
systems [1, 2, 3, 6, 7, 9, 10]. Many mathematicians and physicists have been
interested to the problems whether quantum Markov semigroups on the subal-
gebra have their extensions on the full algebra [1, 5, 8]. These semigroups acts
separately on diagonal and off-diagonal bounded operators with respect to the
chosen basis.

Let M be a von Neumann algebra acting on a complex Hilbert space H and
&o be a fixed cyclic and separating vector for M. Let A and o; be the modular
operator and the modular group associated with the pair (M, &), respectively
[4]. Consider the symmetric embedding map:

’io : M —H
io(A) = A4 Ag,.
In [3, 9], using the theory of noncommutative Dirichlet forms in the sense of

Cipriani [6], authors constructed the symmetric Markovian semigroup {7} }+>0
on the standard forms of the von Neumann algebra M, and by the symmetric
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embedding map g, the KMS-symmetric Markovian semigroup {S;};>o on M:
ig 0 Sy = T; oig. Concretely, for a fixed admissible function f and z € M, z =
x1 + %2, 2] = 2k, k = 1,2 satisfying suitable conditions, they constructed the
KMS-symmetric Markovian semigroup {S;} with the generator G on M:

(1.1) G(A) = /[Gl(AJ) + Ga2(A, 1) f(t)dt,
where
Gi(At) = oppipp(@r)oe(x1)A+ Aoy(z1)or—ij2(T1)
—0t+i/2($1)A0t($1) - Ut(UCl)AUt—i/Q(iﬁl)
and
Go(At) = oppia(w2)oi(wa) A+ Aot (22)04—; j2(22)
—0y4i/2(x2) Aoy (w2) — 0y (w2) Aoy _i/9(22).

In this paper, we consider the faithful, normal, semifinite trace Tr on L(b).
The Hilbert-Schmidt class L?(h) is a Hilbert space with the inner product,
(&,m) = Tr(&*n). = is the faithful, normal representation of L(h) given by
7(z) = Ly, L& = x€ for € € L2(h). Put M = m(L(p)).

Let {ex}32, be an orthonormal basis of . Let p, w and &, be a strictly

positive density matrix, the corresponding normal state and the corresponding
cyclic and separating vector, respectively:

p= Zrk|ek><ek|, and 7 > O,Zrk =1,
k=0 k=0
w(LCC) = TI'(pZL’) = <£07$€0>7

go=p"2 =3 Pler)enl.
k=0

Since 7y, is a monomorphism, we identify M = 7, (L(h)) with L(h).

The purpose of this paper is to find a sufficient and necessary condition for
x € M used to construct the semigroup {S;}¢>0 on M so that the semigroup
acts separately on diagonal and off-diagonal operators with respect to this
basis and, as an application, study the KMS-symmetric Markovian semigroup
{St}¢>0 which is p—invariant.

This paper is organized as follows. In Section 2, we introduce a necessary
terminologies and the generator of KMS-symmetric Markovian semigroup on
M constructed in [3, 9]. In Section 3, we give our main results and proofs.

2. The quantum Markov semigroup

In this section, we introduce some terminologies and the generator of KMS-
symmetric Markovian semigroup on M constructed in [3, 9].

Let M be a o-finite von Neumann algebra acting on a complex Hilbert space
‘H with an inner product (-,-). Let & € H be a cyclic and separating vector
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for M. We use A and J to denote respectively, the modular operator and the
modular conjugation associated with the pair (M, &y). The associated modular
automorphism group is denoted by o : 04(A4) = ATAA~" A€ M, t € R. The
map j : M — M’ is the antilinear x-isomorphism defined by j(A) = JAJ, A €
M, where M’ is the commutant of M.

The positive cone P associated with the pair (M, &) is the closure of the set
{Aj(A) : A € M}. P can be obtained by the closure of the set {A/4A* Ag, :
A € M} and is self-dual in the sense that

{€er:(&n) =0, ipe P ="P.

For the details we refer [6] and Section 2.5 of [4].

The form (M, H, P, J) is the standard form associated with the pair (M, &;).
The Hilbert space H is the complexification of the real subspace H’ = {¢ €
H : (£,m) € R, Vn € P}, whose elements are called J-real: H = H’ @ iH’.
Such a positive cone P gives a rise to a structure of ordered Hilbert space
on H”(denoted by <) and an anti-unitary involution J on H by J(£ 4 in) :=
€—in, Vé&m € HY. For &,p € H’, € < 1 means n — & € P. Any J-real
element ¢ € H” can be decomposed uniquely as a difference of two orthogo-
nal, positive elements, called the positive and the negative part of £&: £, & €
P& =& — &, (4,6-) = 0. The order interval {n € H : 0 < n < &},
denoted by [0, &p], is a closed convex subset of H, and we denote the nearest
point projection onto [0,&y] by n — ;.

Let My C M be the *-subalgebra of the os-entire analytic elements [4] and
M the subset of positive elements of M. Let w be a vector state on M such
that w(A) = <§0, Afo), Ae M.

Consider the semigroup {S;};>0 of everywhere defined linear maps on M.

A semigroup {S;}i>0 is said to be KMS-symmetric if for all t € R and for all
A, B € My, one has
(2.1) w(Si(A)o_ij2(B)) = w(oi/2(A)Se(B)).
A semigroup {S;}+>0 is said to be real if S;(A*) = (S¢(A))* for all A € M and
for all t > 0, positive preserving if Sy(A) € My for all A € M, and for all
t > 0, sub-Markovian if 0 < S;(A) <1 for all0 < A <1 and for all ¢ > 0.
A semigroup {S;}i>0 is said to be Markovian if S, is positive preserving and
S¢(1) =1 for all t > 0.

Next, we consider a complex valued, closed, positive sesquilinear form on
some linear manifold of H : £(-,-) : D(E) x D(E) — C satistying £(£,£) > 0
for all £ € D(E), and also the associated quadratic form: &[] : D(£) — C,
E[€] := E€(£,€). A quadratic form (£, D(€)) is said to be J-real if JD(E) C D(E)
and E[JE] = £[¢] for any £ € D(E), equivalently, £(JE,Jn) = E(n,§) for all
§&n € D(E).

A J-real, real-valued, densely defined quadratic form (€, D(E)) is called
Markovian (with respect to &) if

ceDE)NH = & eDE), El&r] <E[E).
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A closed Markovian form is called a Dirichlet form.

For a positive closed form (&, D(£)), there exists a positive self-adjoint op-
erator (H, D(H)) such that

E(&,m) = (& Hn), & ne D),

and a strongly continuous, symmetric semigroup {71};}i>0,7; = e tH . More-
over, when (£, D(£)) is a Dirichlet form, H is called a Dirichlet operator. For
the details, see Section 3.1 of [4].

In [9], the author has used the notion of admissible function to construct
Dirichlet forms.

Definition 2.1. An analytic function f : D — C on a domain D containing
the strip Im z € [—1/4,1/4] is said to be admissible if the following properties
hold:

(a) f(t) >0 forallteR,
(b) f(t+i/4)+ f(t—i/4) > 0forallt € R,
(c) there exist M > 0 and p > 1 such that the bound
[f(t+is)] < M(1+[t])~7
holds uniformly in s € [—1/4,1/4].
The function g(t) given by

2 1.2 .
(22) g(t) = —_— (ek/4 + e_k/4)—1e—§k e—Zkt dk
Var

is admissible. See the proof of Lemma 3.1 of [9].
Using a fixed admissible function f and z € M satisfying the condition

sup  ||oris(2) || < M for some M > 0 uniformly ¢ € R, the following
s€[—1/4,1/4]
(bounded) Dirichlet form (€, H) was constructed in [3, 9]:

(2.3) En.6) = / ([ormiya(@) - § (Oroipale
)

1n,
13240
N]n,

J&) s

Putting = = %(xl +ixg), ¥1 = 27,29 = x5 € M, the above form (£, H) can

be rewritten as

(2.4) En.E) = / ([oriyaler) = j (Griyalan

Ot—i/4\T Ut 1/4

)

[o1—i/a( ")
/([Ut 1/4(x* = j(0t-ija(x))
[ x))

O¢— 1/4 _.7 Ut 1/4
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for any n,£ € H. Thus the (bounded) Dirichlet operator H associated with
(E,H) is

H = [l =i @uaelom o) - § @) fod:
+ /[Ut+i/4(932) —J (Oryipa(@2))llor—ija(x2) — j (01—ija(w2))] f(t)dt.

Notice that j(B) = JBJ € M’ and JB& = AY2B*¢, for any B € M.
Using the symmetric embedding map, define the operator G on M given by
AYAG(A)E = HAY* ALy, Ae M,

and the semigroup S; = e~ *“ on M. Then

(2.5) GlA) = / GIA, 1) F(8)dt
- / (G (A, 1) + Ga(A, O] F (),
where
Gi(At) = 0t+i/2($1)0t($1)A+A0t($1)0t—i/2(x1)
—0pyis2(x1)Aci(x1) — o¢(w1) Aoy_ija(21)
and

Ga(A,t) = oppipp(x2)oi(x2)A+ Ao(x2)oi—;/2(x2)
—0vyis2(x2)Act(x2) — 04 (12) Aoy_ijo(2).

The operator G is a generator of the KMS-symmetric Markovian semigroup
{S.} associated to z € M. See Remark 2.1 of [3] and Theorem 2.12 of [6].

3. Invariant subspaces

In this section we give the sufficient and necessary conditions for x used to
construct the semigroup {5} in Section 2 so that the semigroup acts separately
on diagonal and off-diagonal operators with respect to a basis, and study some
results.

Let h be a complex separable Hilbert space and let L(h) be the von Neumann
algebra of all bounded operators on . The faithful, normal, semifinite trace on
L(h) is denoted by Tr. The Hilbert-Schmidt class L2(h) is a Hilbert space with
the inner product (£, ) = Tr(£*n). Consider the faithful, normal representation
7, of L(h) given by

71+ L(h) — L(L*(h)), m(2) = Lo,

where L, is the left multiplication operator, £ +— z&. Put M(= L£L>*) =
7L (L(B)).
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The closed convex cone L3 (h) in L?(h) consisting of nonnegative Hilbert-
Schmidt operators is a self-dual cone in the sense that

L2(h) = {€ € L*(8) : (&,m) = 0¥y € L%(B))}.

The associated antiunitary conjugation J on L2(h) is simply the adjoint op-
erator on L%(h): J¢ = £*. Then (M, L?(h), L2 (h),*) is a standard form for
L(b).

The following notation remains highly convenient. For vectors e, f € b, let
le){(f| denote the operator on h given by |e)(f|v = (f,v)e. Thus |e)(f]| is one
rank operator on h and so |e)(f| € L(h).

Now let {ex}°, be an orthonormal basis of h. Let p, w and &, be a strictly
positive density matrix, the corresponding normal state and the corresponding
cyclic and separating vector, respectively:

p= Zm|ek>(ek\7 ri > 0 and Zrk =1,

w(L:D) = TI'(p.fL') = <§0,$€0>,
§o=p""= Z”i/2|€k><€k|-
k=0

The action of the associated modular operator and the modular group are given
by

AYV2L& = p'?z, e L(b),
O't(Lw) = L

pitxpfit .

Since 77, is a monomorphism, we identify M = £ with L(h). We will write
the above second term as o,(z) = ptap~*
Consider a fixed element x € M such that

(3.1) r = Z Tim|em) (e, Tim € C,
I,m>0
and let
1 Tim + Tl
" - TM > Bl = Y walen) el
l,m>0 I,m>0
1 Tim — Tml
o= @-at)= ) T e lem el = > zimlem) el
¢ 1L,m>0 l,m20

Then 7 = x1, 25 = x2 and z = 1 + ix2.
Assume that

(3.2) sup Z Tl | Tim | < 00.
0§s§1/2l7m20
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In case sup; Card({m|xm, # 0}) < oo, the assumption (3.2) is reduced to the
condition

sup E i |@m| < oo.
0<s<1/2713

It follows from (3.2) that for all t € R and s € [-1/2,1/2], o44,5() is bounded
and

Trvinls) = g

(3.3) = Z TS S e em ) e

1,m>0

Lemma 3.1. For each A = |eg){e,|, we have the following relations: for all

teR,
orriple)oa)d = Y PP yylen) (eal,
I,m>0
Aoy(z1)o1—ija(z1) = Z TnT 1/2 D 1/2ymnylm|ek><el‘7
I,m>0
1/2
Oryipp()Aoi(ar) = > e Ry ) (e,
1,m>0
oi(@)Aoi_ia(m1) = Y v 2 e el
I,m>0
and
Oryija(wa)or(w)A = Y P2 e 2k em) (el
1,m>0
AUt($2)Ut7i/2($2) = Z Tlt 1/2 S 1/2Zmnzlm|ek><el‘7
I,m>0
e b1/ i
Orrija(wa)Aoy(wa) = D il e L2t e 2t em) e,
l,m>0
or(w2)Aoy_isa(x2) = Z Tlt?";?t ZtH/z e ZkmZin|em) (el]-
l,m>0
Proof. This is clear from (3.3). O

Applying Lemma 3.1 to (2.5), we have the concrete action of the generator

G:

(3.4) G(A) = / GA (), A= lex){enl,
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where
G(At) = Z T _lt\/i(ylmykl+Zlmzkl)|6m><€n|
1,m>0
+ Z Tltrl U (ymnylm+zmnzlm>|ek><el|
I,m>0
—it it —it | Tk
— Z P T = WkmYin + Zkm2in) lem) (el
1,m>0 I'm
_ Z it ’trltrflt[(ykmyzn+2kmzln)€m><€l|
I,m>0
- Z rity Zt\/i(xlmrflk+.’L'ml-1'kl)|em><en|
l,m>0
=+ Z Tlt _Zt1( (xmnmml+xn’mxl?”n)|ek><el‘
1,m>0

_ Tk T .
— Z Tmrk ltrlt’/‘l u ’ [— + A/ i) (kaxnl + l‘mkmln)|€m><€l|~
Lm>0 'm "

Now we fix the admissible function f given by
1 1 .
f(t) = o /(ek/4 + e R4yl akt o mikt g

where g is defined as in (2.2). Notice that g is the Fourier transform of h(k) =
2(ek/* 4 e‘k/4)_16_%k2. Thus

(3.5) /f(t)eiptdt = Q(ep/4+e—p/4)—1e—ép2
= sech(‘g)e’%p2

for any p € R. Applying (3.5) to (3.4), the generator G can be written as, for
A = |ex)(enl,

1. r _l(nrm)2 [ 7
G(A) = Z sech(~ In —)e 2(n 5 — (T Tk + TrmiTrt)|€m) (€n|
4 Tk T
1,m>0 "
I(nZin)? [Tm
—+ E sech ) " (xmnxml + xnmxlm)‘ek><el|
1,m>0
_ E sech(- ln [ml'n Je 2 z(In T:Z:zn) \/7 T”
Lm0 4 TET] T'm Tl

(3.6) X (TrmTnl + TmkTin)|em) (el-
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Consider two conditions for the sequence {zyy, }1,m>0 of the complex num-
bers:

(3.7) TemThl + Tmitie =0, L £ m,l #k, m #k,
(38) TmmTmk T TmmTkm = TkmTkk + TmkTkk, M 75 k
for all k.

Lemma 3.2. Let the sequence {xim }i.m>0 of the complex numbers satisfy the
above condition (3.7). Then for each k there exist at most three nonzero el-
ements Tyl , Thiys Thi, 11,12 # k of {Tkmtm>0 and at most nonzero three ele-
MENtS Tigk, Tiyks Thks 13,1a # k of {Tmk fm>0.
Proof. Suppose that there exist three nonzero elements i, Zki,, Tk, such
that l1,l2,l5(# k) are mutually different. It follows from (3.7) that we have
’lelk, .Tle, xlgk 7é 0 and

Tkl Thily + Ttk Tk = 0,

Thiy Thiz + Tl kTigk = 0,

ThiyThiz + TiokTiyk = 0.

Tl Tiok Lok x T . . . x : x
Then =2 = 2kt — _Zsk bk _ s which implies =2 = —2*3  that
Tiik Tkiy Thiz ' Tkiy Tigk Tkl Tigk
h 9 3 3 3
is, |z,6)* = —|Tki,|° and zi,; = Tk, = 0. This is a contradiction. There does

not exist nonzero elements g, , T, , Tri, such that 1y, ls,l5(# k) are mutually
different.
The other part will be proved similarly. O

By Lemma 3.2, rearranging the orthonormal basis {ej }x>0, the operator x
satisfying (3.7) can be expressed as the following matrix form:

oo To1 To2 0 0 0

10 w11 0 x3 O 0

20 0 w22 0 wag O
0 337 0 w33 0 35
0 0 T 42 0 T 44 0
0 0 0 I53 0 I55
0 0 0 0 T4 0 T66

OgOOOO

We call the operator of M of the form >~ ., wx|ex) (x|, w, € C the diagonal
operator and x € M satisfying Tr(z|e,)(en|) = 0 for all n the off-diagonal
operator. Let My be the (diagonal) subalgebra consisting of the diagonal
operators and M, the space of off-diagonal elements. Every operator in M is
expressed as the sum of the diagonal operator and off-diagonal operator.

Theorem 3.3. Let x = )3, ~,%imlem)(el| satisfy the assumption (3.2) and
{S}t>0 be the semigroup with generator G in (3.6) (and (3.4)). x satisfies two



90 VENI CHOI AND CHUL KI KO

conditions (3.7) and (3.8) if and only if Mg and M,q are Si-invariant for all
t >0, that is, St(My) C Mg and Si(Moa) C Mog.

Proof. For A = |ey){ex| € Mgy, we get from (3.6) that

1 oy — L (ln Tm )2
GA) = Y sech(gn=")e M [ (@, T + T lem) (ex]
Tk m
1,m>0
1 2
+ Z sech(~ ln ) —3(n ) \/7(xmkxml + TkmTim)|ex) (1]
1,m>0
— ) sech(5 1n 3(n 55 1/ ,/rk
r’"b
l,m>0
(3.9) X (Thm Tl + mmkxlk) lem) (el

We rewrite in detail as

= \/ el + |zl lex) (ex)
>0

; Tm 2
+ Z sech ) 2( ) ,/ (TimTik + Trir)|em) (ex|
1>0

m£k
m>0

\f ol + i) ler) el
m>0

—1(In k) /
+Zsech ln— anrl Z $mkxml+$km$lm)|€k><el|

l#k m>0
1>0

Tk
23 ,/;(\xw + o ) er) e

>0

1(ln Zm)?2 Tk .
-3 sech ) Tk ( — 1)($km$kk + Tk ) em) (x|

m#k
m>0

— Zsech( In —) 3 71)° (1 +4/ = . )(ﬂﬁkkl’kl + Tk lex) (el

1%k
1>0

1 n Im [Tk
- Z sech(flnr z(l \/ﬁ
l#m 4 T 'm

1,m#k
1,m>0

(3.10) X (TkmTrt + Trmkir) em) (el
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For B = |eg){en|, k # n in M,q, we also get

1 _1l(lp T )2
= sech(i In Ln)@ 3 T’“) 1/ (@i + Trizr)|€n) (€n|
Tk
1>0

In Zm )2
+ Z bech ) 30 35 ,/ (TimTik + TmiTki)|€m) (enl
>0

m#n
m>0
2
-I-sech( In ) Z U (TmnTmk + TamTrm) |ex) (ex]
Tk m>0
1(ln T—")Z
—|—Zbech ln K 1/ (ZemnTml + TrmTim)|ex) (el
1#k m>0

1>0

1 2 Tk T PR
—sech(fl ) Z \/7+ \/l> (@@t + Tz |ed) (el
4 T T
1>0
— 3 seeh(; ’""”"") ~hln sp)* \/ﬁ o)
= TET] Tm Tl

m>0

(3.11) X (TkmTnl + TmkZin)|em) (€]

By (3.10) and (3.11), G(A) € My and G(B) € M,q if and only if the following
relations hold:

TkmTl + Tkt = 0, L#Fm, L #k, m#Ek,

Tk .
\/ (TimTik + Tpir) = (1 | — + 1) (Tkm Tk + TmkTrr), m # k,
T'm
>0
Tk .
1/ (TmkTmi + ThmTim) = (1 +4/ 77) (TrrTrl + Trrxik), | # K
m>0

for all k. The above relations are reduced to (3.7) and (3.8).
In this case we have

(3.12) G(A 1/ Lzl + owl®)lex) (el
>0

Tk
-2 E(\xkﬂ? + |z*)en) el
1>0
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and
G(B)
m 1 (ln r’” )2
= E sech E — (T @1k + TriTrt)|em) (en]
m7>£'8. >0
h -3z 3 (In :771)2
+ sec k — (TmnTmi + TamZim)|ex) (e
126 m>0
_ Z §ech ln ’I"m'f‘n) 1(In T;’;:l") Tn
= 4 LT Tm 7nl
m>0

X (T kTl + Tk in) lem) (el

which implies S;(Mg) C My, St(Moaq) C Mopg. The proof is completed. O

Remark 3.4. Since 04(A) = Aforall A € Mg and t € R there exists a projection
(o¢-compatible conditional expectation) Pay, of M onto My (Proposition 2.6.6
of [11]). The subalgebra M, and the space M4 are invariant for the semigroup
{S;}+>0 in Theorem 3.3. So the restriction S¢ := S;| s, of S¢ on M, is also a
semigroup and

S (Pay(A)) = P, (Si(A))
for all A € M.

Notice that the semigroup {S;}>o is a KMS-symmetric semigroup on M
(see (2.1)) and S;(1) = 1 for all ¢ > 0, and so {S;};>0 is p-invariant in the
sense that

Tr(pSi(A)) = Tr(pA), Ae M.

Theorem 3.5. Let {S;}1>0 be the semigroup with generator G in (3.6) asso-
ciate to x € Mg as in (3.1).

(a) Sy (A)=A for all Ae My and t > 0.

(b) A density matriz p =, Tklex)(ex| is an invariant state for {S;}>o,
that is, Tr(pS;(A)) = Tr(pA) for all A€ M and all t > 0.

Proof. (a) By (3.9), we have G(A) = 0, which is equivalent to S;(A) = A for
all A € M.

(b) Let A € M. Then A € M can be written as the sum A = Ay + A,q with
Ag € My and A,y € Myg. Since x € My, we get from (a) that S;(Ag) = Ag
for all t > 0. By Si(Apq) € Mg for all t > 0, we have Tr(pS:(Aosq)) = 0 and so

Te(pS)(A)) = Te(5Sy(Ad)) = Tr(5Aq) = Tr(5A)

for all ¢ > 0. The proof is completed. O
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