A GLOBAL BEHAVIOR OF THE POSITIVE SOLUTIONS OF
 $$
x_{n+1}=\frac{\beta x_{n}+x_{n-2}}{A+B x_{n}+x_{n-2}}
$$

JongAn Park

Abstract. In this paper we prove that every positive solution of the third order rational difference equation

$$
x_{n+1}=\frac{\beta x_{n}+x_{n-2}}{A+B x_{n}+x_{n-2}}
$$

converges to the positive equilibrium point

$$
\bar{x}=\frac{\beta+1-A}{B+1},
$$

where $0<\beta \leq B, 1<A<\beta+1$.

1. Introduction

Many authors have studied the periodic behavior or global stability of the positive solution of the rational difference equations [2, 3]. In [1] E. Camouzis obtained the global stability of the positive solutions of the following third order rational difference equation

$$
x_{n+1}=\frac{\beta x_{n}+x_{n-2}}{A+B x_{n}+x_{n-1}}
$$

where $1 \leq B, 1 \leq A<\beta+1, \beta>0$. In this paper we apply the ideas of E . Camouzis to the global stability of the positive solutions of another third order rational difference equation

$$
\begin{equation*}
x_{n+1}=\frac{\beta x_{n}+x_{n-2}}{A+B x_{n}+x_{n-2}}, \tag{1}
\end{equation*}
$$

where $0<\beta \leq B, 1<A<\beta+1$. We recall that $\left\{x_{n}\right\}$ is a positive solution of (1) if given initial $x_{-2}, x_{-1}, x_{0}(>0)\left\{x_{n}\right\}$ satisfies (1). And we know that the equilibrium points of both difference equation are $0, \frac{\beta+1-A}{B+1}$. Global stability means that every positive solutions of the difference equation converge to a equilibrium point. Specifically the equilibrium point is positive in [1].

2. Main result

By using the technique 'backward repeated calculation' of [1] we obtained the global stability of the positive solution of the rational difference equation (1).

Lemma 2.1. Assume $A>1, \beta>0, B>0$. Let $\left\{x_{n}\right\}$ be a positive solution of the difference equation (1). Then it holds that

$$
x_{n}<\frac{\beta}{B}
$$

for all sufficiently large n.
Proof. To obtain a contradiction we assume that there exist infinitely many N such that

$$
x_{N}>\frac{\beta}{B} .
$$

For such N we have

$$
x_{N}=\frac{\beta x_{N-1}+x_{N-3}}{A+B x_{N-1}+x_{N-3}}>\frac{\beta}{B} .
$$

From this we have

$$
\begin{array}{r}
\beta x_{N-1}+x_{N-3}>\frac{\beta}{B}\left(A+B x_{N-1}+x_{N-3}\right), \\
x_{N-3}>\frac{\beta}{B} A+\frac{\beta}{B} x_{N-3}>\frac{\beta}{B} A . \\
\text { Similarly, from } x_{N-3}=\frac{\beta x_{N-4}+x_{N-6}}{A+B x_{N-4}+x_{N-6}}>\frac{\beta}{B} A \text {, we obtains }
\end{array}
$$

$$
x_{N-6}>\frac{\beta}{B} A^{2}
$$

Inductively

$$
x_{N-3 k}>\frac{\beta}{B} A^{k},(k=1,2, \ldots)
$$

Since $A>1$, we have the contradiction.
Lemma 2.2. Assume $0<A<\beta+1, \beta>0, B>0$. Let $\left\{x_{n}\right\}$ be a positive solution of the difference equation (1). Then

$$
\limsup _{n \rightarrow \infty} x_{n}>0
$$

Proof. To obtain a contradiction we assume that

$$
\lim _{n \rightarrow \infty} x_{n}=0
$$

Since $0<A<\beta+1$, we can choose $\epsilon>0$ such that

$$
0<\frac{A+(B+1) \epsilon}{\beta+1}<1
$$

Since $\lim _{n \rightarrow \infty} x_{n}=0$, there exists N such that we have

$$
x_{N+k}<\epsilon
$$

for all $k=1,2, \ldots$. Let $m:=\frac{A+(B+1) \epsilon}{\beta+1}<1$. Let $m_{k}:=\min \left\{x_{N+k}, x_{N+k-2}\right\}$
for all $k=2,3, \ldots$. Then from $x_{N+k+1}=\frac{\beta x_{N+k}+x_{N+k-2}}{A+B x_{N+k}+x_{N+k-2}}<\epsilon$, we obtains

$$
\frac{(\beta+1) m_{k}}{A+(B+1) \epsilon}<\frac{(\beta+1) m_{k}}{A+B x_{N+k}+x_{N+k-2}}<\epsilon .
$$

Therefore

$$
m_{k}<m \epsilon \quad \text { for all } k=2,3, \ldots
$$

If $m_{k}=x_{N+k}$, then $m_{k-1}<m^{2} \epsilon$ from (1). On the other hand if $m_{k}=$ x_{N+k-2}, then $m_{k-3}<m^{2} \epsilon$. Similarly $m_{k-2}<m^{3} \epsilon$ or $m_{k-4}<m^{3} \epsilon$ or $m_{k-6}<$ $m^{3} \epsilon$. Since k is arbitrary and $m<1$, by backward repetitions we have the contradiction.

Theorem 2.3. Assume $1<A<\beta+1, B \geq \beta>0$. Let $\left\{x_{n}\right\}$ be a positive solution of the difference equation (1). Then

$$
\lim _{n \rightarrow \infty} x_{n}=\frac{\beta+1-A}{B+1} .
$$

Proof. Let $S:=\limsup _{n \rightarrow \infty} x_{n} \geq 0, I:=\liminf _{n \rightarrow \infty} x_{n} \geq 0$. By Lemma 2.1 and 2.2,

$$
0<S \leq \frac{\beta}{B}
$$

Then there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
x_{n_{i}+1} \rightarrow S, \quad x_{n_{i}} \rightarrow l_{0}, x_{n_{i}-1} \rightarrow l_{-1}, x_{n_{i}-2} \rightarrow l_{-2} .
$$

From the difference equation (1)

$$
S=\frac{\beta l_{0}+l_{-2}}{A+B l_{0}+l_{-2}} .
$$

Since $l_{2} \leq S \leq \frac{\beta}{B}$ and $A \geq 1$,

$$
S \leq \frac{\beta S+l_{-2}}{A+\beta S+l_{-2}}
$$

Since $B \geq \beta>0$,

$$
S \leq \frac{\beta S+S}{A+\beta S+S}
$$

Since $S>0$,

$$
S \leq \frac{\beta+1-A}{B+1}
$$

We claim that $I:=\liminf _{n \rightarrow \infty} x_{n}>0$. Indeed we can choose $m>0$ such that

$$
S \leq \frac{\beta+1-A}{B+1}<(\beta+1-A)-B m
$$

So we can choose N such that

$$
x_{n}<(\beta+1-A)-B m \quad \text { for all } n \geq N-2
$$

Furthermore we choose $\delta>0$ such that

$$
\delta=\min \left\{x_{N}, x_{N-1}, x_{N-2}, m\right\}
$$

Then

$$
\begin{aligned}
x_{N+1} & =\frac{\beta x_{N}+x_{N-2}}{A+B x_{N}+x_{N-2}} \\
& \geq \frac{\beta \delta+x_{N-2}}{A+B \delta+x_{N-2}} \\
& \geq \frac{\beta \delta+\delta}{A+B \delta+(\beta+1-A)-B \delta} \\
& \geq \frac{(\beta+1) \delta}{\beta+1} \\
& \geq \delta .
\end{aligned}
$$

Inductively $x_{n} \geq \delta$ for all $n \geq N+1$. Therefore $I>0$. Then there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
x_{n_{i}+1} \rightarrow I, \quad x_{n_{i}} \rightarrow l_{0}, x_{n_{i}-1} \rightarrow l_{-1}, x_{n_{i}-2} \rightarrow l_{-2} .
$$

By the difference equation (1)

$$
I=\frac{\beta l_{0}+l_{-2}}{A+B l_{0}+l_{-2}}
$$

Since $I>0, I \geq \frac{\beta+1-A}{B+1}$. We conclude that $S=I$ and

$$
\lim _{n \rightarrow \infty} x_{n}=\frac{\beta+1-A}{B+1}
$$

Remark 2.4. We test the results with the following simple Mathematica Code.

```
nst1[ui_,vi_,wi_, p_, q_, r_, n_]:=Module[{l},
df1[\mp@subsup{w}{-}{\prime},\mp@subsup{u}{-}{\prime}]:=(r w+ u)/(p+q w+u);
l=(r+1-p)/(q+1);
Print[l];
phi[x_List]:={x[[2]],x[[3]],df1[x[[3]],x[[1]]]};
NestList[phi,{ui,vi,wi},n]
]
```


References

[1] E. Camouzis, Global analysis of solutions of $x_{n+1}=\frac{\beta x_{n}+\delta x_{n-2}}{A+B x_{n}+C x_{n-1}}$, J. Math. Anal. Appl. 316 (2006), 616-627.
[2] M. R. S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equation, with Open Problems and Conjectures, Chapman and Hall/CRC, 2002.
[3] R. D. Nussbaum, Global stability, two conjectures and maple, Nonlinear Anal. 66 (2007), 1064-1090

Department of Mathematics
Kangwon National University
Chuncheon 200-701, Korea
E-mail address: jongan@kangwon.ac.kr

