Abstract
The objectives of this study are the detection and forecast of climate change signal in the annual mean of surface temperature data, which are generated by MRI/JMA CGCM over the Korean Peninsula. MRI/JMA CGCM outputs consist of control run data(experiment with no change of $CO_2$ concentration) and scenario run data($CO_2$ 1%/year increase experiment to quadrupling) during 142 years for surface temperature and precipitation. And ECMWF reanalysis data during 43 years are used as observations. All data have the same spatial structure which consists of 42 grid points. Two statistical models, the Bayesian fingerprint method and the regression model with autoregressive error(AUTOREG model), are separately applied to detect the climate change signal. The forecasts up to 2100 are generated by the estimated AUTOREG model only for detected grid points.
본 연구는 한반도 지역의 지상기온에서 나타나는 기후변화시그널의 탐지와 예측을 목적으로 하고 있으며, 일본기상청 전지구 수치모델(MRI/JMA CGCM) 모의실험자료인 통제실험자료(대기 중 $CO_2$ 농도 변화가 없다는 가정 아래 실험된 자료)와 시나리오실험자료($CO_2$ 농도가 4배까지 연 1%씩 증가하는 가정 아래 실험된 자료)를 사용하였다. 수치모델 자료기간은 142년 자료이며, 관측치로 사용되는 ECMWF 재분석자료는 43년 자료이다. 모든 자료는 42개 격자점으로 이루어진 동일한 공간구조로 구성되었다. 베이지안 지문법과 자기회귀과정인 회귀모형(AUTOREG 모형)을 각각 적용하여 격자점별로 탐지 작업을 수행하였다. 탐지 결과가 유의한 격자점에 대하여 2100년까지 예측 작업을 수행하였다.