DOI QR코드

DOI QR Code

Antioxidant Components and Antioxidant Activities of 70% Ethanol Extracts on Suweon-511 and Ilpum Rice

수원 511호와 일품쌀의 항산화성분 및 70% 에탄올 추출물의 항산화활성

  • Woo, Koan-Sik (National Institute of Crop Science, Rural Development Administration) ;
  • Jeong, Eung-Gi (National Institute of Crop Science, Rural Development Administration) ;
  • Suh, Sae-Jung (Bioenergy Crop Research Center, Rural Development Administration) ;
  • Yang, Chang-Ihn (National Institute of Crop Science, Rural Development Administration) ;
  • Jeong, Heon-Sang (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Kim, Kee-Jong (National Institute of Crop Science, Rural Development Administration)
  • 우관식 (농촌진흥청 국립식량과학원) ;
  • 정응기 (농촌진흥청 국립식량과학원) ;
  • 서세정 (농촌진흥청 바이오에너지작물센터) ;
  • 양창인 (농촌진흥청 국립식량과학원) ;
  • 정헌상 (충북대학교 식품공학과) ;
  • 김기종 (농촌진흥청 국립식량과학원)
  • Published : 2008.10.31

Abstract

To evaluate the potential of a new breed, Suweon-511, antioxidant components and antioxidant activities of the 70% ethanol extracts of Suweon-511 (SWE) and Ilpum (IPE) were measured. Total polyphenol and flavonoid contents were 318.17 and 167.21 $\mu$g/g for SWE, which were higher than that of IPE (222.16 and 100.89 $\mu$g/g). Both $\alpha$- and $\gamma$-tocopherol contents were higher in SWE as well. The total tocopherol contents of SWE (1.31 mg/100 g) was higher than that of IPE (0.86 mg/100 g). The $\alpha$-, $\gamma$- and $\delta$-tocotrienol contents of SWE (0.10, 0.43, and 0.02 mg/100 g) that of IPE (0.09, 0.43, and 0.03 mg/100 g) showed little difference. For $\gamma$-oryzanol, Suweon-511, which contained 76.58 $\mu$g/g, contained ten times as much as I lpum (7.77 $\mu$g/g). The total antioxidant activity of SWE and IPE were 16.00 and 9.73 mg AA eq/g, respectively. For reducing power, at 5 mg/mL, both extracts were 0.18, but at 20 mg/mL, SWE showed 0.61 and that of IPE was 0.58. The DPPH radical, hydroxyl radical, superoxide radical and hydrogen peroxide scavenging activity of SWE were 42.00, 21.59, 23.27, and 17.13% at 5 mg/mL, and for IPE, they were 30.10, 22.37, 25.18, and 18.08%, respectively. These data, as well, did not show big difference between the two breeds. As indicated in the data above, the newly-bred Suweon-511 had higher content of antioxidant components compared to Ilpum, but similar or a little higher antioxidant activity.

2006년 새롭게 육성된 계통명 수원 511호 품종에 대한 이 용가능성을 살펴보고자 항산화성분과 항산화활성을 측정하였다. 총 폴리페놀 함량은 수원 511호에서 318.17 $\mu$g/g으로 나타나 일품쌀(222.16 $\mu$g/g)보다 높았으며, 총 플라보노이드 함량 또한 수원 511호에서 167.21 $\mu$g/g으로 나타나 일품쌀 (100.89 $\mu$g/g)보다 높은 함량을 보였다. $\alpha$- 및 $\gamma$-tocopherol 의 함량은 수원 511호의 경우 0.14 및 1.17 mg/100 g을 나타낸 반면 일품은 각각 0.06 및 0.80 mg/100 g으로 수원 511호 에서 높게 나타났으며, 총 tocopherol 함량 또한 수원 511호 가 1.31 mg/100 g으로 일품(0.86 mg/100 g)에 비해 높았다. $\alpha$-, $\gamma$- 및 $\delta$-tocotrienol의 함량은 수원 511호의 경우 0.10, 0.43 및 0.02 mg/100 g을 나타냈으며, 일품은 각각 0.09, 0.43 및 0.03 mg/100 g으로 두 품종 간에 큰 차이가 없는 것으로 나타났다. 수원 511호 및 일품쌀의 $\gamma$-oryzanol 함량을 측정 한 결과 각각 76.58 및 7.77 $\mu$g/g으로 수원 511호가 약 10배정도 높은 것으로 나타났다. 총 항산화력은 수원 511호와 일품쌀 70% 에탄올 추출물의 총 항산화력은 각각 16.00 및 9.73mg AA eq/g으로 나타났으며, 환원력은 5 mg/mL의 농도에서 수원 511호 및 일품쌀 모두 0.18을 나타내었고 20 mg/mL의 농도에서 각각 0.61 및 0.58을 나타내어 농도 의존적으로 증가하는 경향을 관찰할 수 있었으나 두 품종 간에 큰 차이가 없는 것으로 나타났다. 수원 511호의 DPPH radical, hydroxyl radical, superoxide radical 및 hydrogen peroxide 소거활성은 5 mg/mL의 농도에서 각각 42.00, 21.59, 23.27 및 17.13%로 나타났으며, 일품은 30.10, 22.37, 25.18 및 18.08%로 두 품종 간에 큰 차이가 없는 것으로 나타났다. 이상의 결과를 종합해 볼 때 새롭게 육성된 수원 511호 쌀은 일품쌀에 비해 항산화성분이 더 많이 함유되어 있는 것으로 나타났으며, 항산화활성 또한 약간 높은 활성을 가지는 것으로 나타났다.

Keywords

References

  1. Chae JC. 2004. Present situation, research and prospect rice quality and bioactivity in Korea. Food Sci Indus 37: 47-54
  2. Na GS, Lee SK, Kim SY. 2007. Antioxidative effects and quality characteristics of the rice cultivated by organic farming and ordinary farming. J Korean Soc Appl Biol Chem 50: 36-41
  3. Ha TY. 2002. Nutritional and functional properties of rice. Proceedings of the Korean Society of Postharvest Science and Technology of Agriculture Products Conference. p 64-71
  4. Kim EO, Oh JH, Lee KT, Im JG, Kim SS, Suh HS, Choi SW. 2008. Chemical compositions and antioxidant activity of the colored rice cultivars. Korean J Food Preserv 15: 118-124
  5. Sohn HY, Kwon CS, Son KH, Kwon GS, Kwon YS, Ryu HY, Kum EJ. 2005. Antithrombosis and antioxidant activity of methanol extract from different brands of rice. J Korean Soc Food Sci Nutr 34: 593-598 https://doi.org/10.3746/jkfn.2005.34.5.593
  6. Kang MY, Lee YL, Go HJ, Nam SH. 2004. Antioxidative and antimutagenic activity of ethanolic extracts from giant embroynic rices. J Korean Soc Appl Biol Chem 47: 61-66
  7. Chun HS, You JE, Kim IH, Cho JS. 1999. Comparative antimutagenic and antioxidative activity of rice with different milling fractions. J Korean Food Sci Technol 31: 1371-1377
  8. Choi Y, Jeong HS, Lee J. 2007. Antioxidant activity of methanolic extracts from some grains consumed in Korea. Food Chem 103: 130-138 https://doi.org/10.1016/j.foodchem.2006.08.004
  9. Dewanto V, Xianzhong W, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50: 4959-4964 https://doi.org/10.1021/jf0255937
  10. Jia Z, Tang M, Wu J. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-559 https://doi.org/10.1016/S0308-8146(98)00102-2
  11. Lee J, Suknark K, Kluvitse Y, Phillips RD, Eitenmiller RR. 1998. Rapid liquid chromatographic assay of vitamin E and retinyl palmitate in extruded weaning foods. J Food Sci 64: 968-972 https://doi.org/10.1111/j.1365-2621.1999.tb12261.x
  12. Rogers EJ, Rice SM, Nicolosl RJ, Carpenter DR, McClelland CA, Romanczyk Jr LJ. 1993. Identification and quantitation of $\gamma$-oryzanol components and simultaneous assessment of tocopherols in rice bran oil. J Am Oil Chem Soc 70: 301-307 https://doi.org/10.1007/BF02545312
  13. Leong LP, Shui G. 2002. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem 76: 69-75 https://doi.org/10.1016/S0308-8146(01)00251-5
  14. Oyaizu M. 1986. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Japanese J Nutr 44: 307-315 https://doi.org/10.5264/eiyogakuzashi.44.307
  15. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1203 https://doi.org/10.1038/1811199a0
  16. Halliwell B, Gutteride JMC, Aruoma OI. 1987. The deoxyibose method; a simple test tube assay for determination of rate constants for reaction of hydroxyl radicals. Anal Biochem 165: 215-219 https://doi.org/10.1016/0003-2697(87)90222-3
  17. Aruoma OI, Halliwell B, Dizdaroglu M. 1989. Iron independent modification of bases in DNA by the superoxide radical generating system hypoxanthine/xanthine oxidase. J Biol Chem 264: 13024-13030
  18. Müller HE. 1985. Detection of hydrogen peroxide produced by microorganism on an ABTS peroxidase medium. Zentralbl Bakteriol Mikrobiol Hyg A 259: 151-154 https://doi.org/10.1016/S0176-6724(85)80045-6
  19. Lee YR, Woo KS, Kim KJ, Son JR, Jeong HS. 2007 Antioxidant activities of ethanol extracts from germinated specialty rough rice. Food Sci Biotechnol 16: 765-770
  20. Choi Y, Kim MH, Shin JJ, Park JM, Lee J. 2003. The antioxidant activities of the some commercial teas. J Korean Soc Food Sci Nutr 32: 723-727 https://doi.org/10.3746/jkfn.2003.32.5.723
  21. Lee DJ, Lee JY. 2003. Tocopherol and tocotrienol in cereal grains. Korean J Crop Sci 48: 1-12
  22. Lee YR, Kim JY, Woo KS, Hwang IG, Kim KH, Kim KJ, Kim JH, Jeong HS. 2007. Changes in the chemical and functional components of Korean rough rice before and after germination. Food Sci Biotechnol 16: 1006-1010
  23. Xu Z, Hua N, Godber JS. 2001. Antioxidant activity of tocopherols, tocotrienols, and $\gamma$-oryzanol components from rice bran against cholesterol oxidation accelerated by 2,2'-azobis(2-methylpropionamidine) dihydrochloride. J Agric Food Chem 49: 2077-2081 https://doi.org/10.1021/jf0012852
  24. Chien JT, Wang HC, Chen BH. 1998. Kinetic model of the cholesterol oxidation during heating. J Agric Food Chem 46: 2572-2577 https://doi.org/10.1021/jf970788d
  25. Wennermark B, Ahlmen H, Jagerstad M. 1994. Improved vitamin E retention by using freshly milled whole-meal wheat flour duringdrying. J Agric Food Chem 43: 1348-1351 https://doi.org/10.1021/jf00042a019
  26. Meir S, Kanner J, Akiri B, Hadas SP. 1995. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J Agric Food Chem 43: 1813-1815 https://doi.org/10.1021/jf00055a012
  27. Shimada K, Fijikawa K, Yahara K, Nakamura T. 1992. Antioxidative properties of xanthin on autoxidation of soybean oil in cyclodextrin emulsions. J Agric Food Chem 40: 945-948 https://doi.org/10.1021/jf00018a005
  28. Namiki M. 1990. Antioxidants/antimutagens in food. Crit Rev Food Sci Nutr 29: 273-295 https://doi.org/10.1080/10408399009527528
  29. Bloknina O, Virolainen E, Fagerstedt KV. 2003. Antioxidants, oxidative damage and oxygen deprivation stress. Ann Bot 91: 179-194 https://doi.org/10.1093/aob/mcf118
  30. Hochestein P, Atallah AS. 1988. The nature of oxidant and antioxidant systems in the inhibition of mutation and cancer. Mutat Res 202: 363-375 https://doi.org/10.1016/0027-5107(88)90198-4
  31. Cotelle N, Bernier JL, Henichart JP, Catteau JP, Gaydou E, Wallet JC. 1992. Scavenger and antioxidant properties of ten synthetic flavones. Free Radic Biol Med 13: 211-219 https://doi.org/10.1016/0891-5849(92)90017-B
  32. Lee J, Koo N, Min DB. 2004. Reactive oxygen species, aging, and antioxidative nutraceuticals. Comprehensive Rev Food Sci Food Safety 3: 21-33 https://doi.org/10.1111/j.1541-4337.2004.tb00058.x
  33. Pyo YH, Lee TC, Logendra L, Rosen RT. 2004. Antioxidant activity and phenolic compounds of Swiss chard extracts. Food Chem 85: 19-26 https://doi.org/10.1016/S0308-8146(03)00294-2

Cited by

  1. Comparison of Rice Properties Between Rice Grown Under Conventional Farming and One Grown Under Eco-Friendly Farming Using Hairy Vetch vol.39, pp.11, 2010, https://doi.org/10.3746/jkfn.2010.39.11.1684
  2. The Impact of Cooking on the Antioxidative and Antigenotoxic Effects of Rice vol.42, pp.9, 2013, https://doi.org/10.3746/jkfn.2013.42.9.1370
  3. Antioxidant and Antitumor Activities of Ethanol Extracts from Unhulled and Hulled Rice Hiami (Oryza sativa L. cv. Hiami) vol.39, pp.2, 2010, https://doi.org/10.3746/jkfn.2010.39.2.179
  4. Botanical characteristics in the developed CNU-Hinhchal waxy rice lines vol.39, pp.3, 2012, https://doi.org/10.7744/cnujas.2012.39.3.315
  5. Effects of Helianthus tuberosus Powder on the Quality Characteristics and Antioxidant Activity of Rice Sponge Cakes vol.29, pp.2, 2014, https://doi.org/10.7318/KJFC/2014.29.2.195
  6. Effects of Die Temperature and CO2Injection on Physical Properties and Antioxidant Activity of Extruded Rice with Tomato Flour vol.44, pp.6, 2015, https://doi.org/10.3746/jkfn.2015.44.6.912
  7. Antioxidant Compounds and Antioxidant Activities of the 70% Ethanol Extracts from Brown and Milled Rice by Cultivar vol.39, pp.3, 2010, https://doi.org/10.3746/jkfn.2010.39.3.467
  8. Changes in Quality Properties of Brown Rice after Germination vol.44, pp.3, 2012, https://doi.org/10.9721/KJFST.2012.44.3.300
  9. Quality Characteristics of Purple Sweet Potato Muffins Containing Rice Flour vol.19, pp.6, 2012, https://doi.org/10.11002/kjfp.2012.19.6.833
  10. Antioxidant Component and Activity of Dropwort (Oenanthe javanica) Ethanol Extracts vol.40, pp.2, 2011, https://doi.org/10.3746/jkfn.2011.40.2.316
  11. Changes of Physicochemical Properties According to the Shoot Length in Germinated Brown Rice vol.59, pp.3, 2014, https://doi.org/10.7740/kjcs.2014.59.3.223
  12. Physiochemical Properties of Germinated Brown Rice vol.41, pp.7, 2012, https://doi.org/10.3746/jkfn.2012.41.7.963
  13. Antioxidant Compounds and Antioxidant Activities of Ethanol Extracts from Milling By-products of Rice Cultivars vol.39, pp.4, 2010, https://doi.org/10.3746/jkfn.2010.39.4.624