References
-
C. Yamanaka et al., "Laser-implosion of high-aspect-ratio targets produces thermonuclear neutron yields exceeding
$10^{12}$ by use of shock multiplexing," Phys. Rev. Lett., vol. 56, no. 15, pp. 1575-1578, 1986 https://doi.org/10.1103/PhysRevLett.56.1575 - H. Azechi et al., "High density compression experiments at ILE, Osaka," Laser and Particle Beams, vol. 9, no. 2, pp. 193-207, 1991 https://doi.org/10.1017/S0263034600003281
- E.I. Moses,"Ignition on the National Ignition Facility," J. Phys.: Conf. Series, vol. 112, p. 012003, 2008 https://doi.org/10.1088/1742-6596/112/1/012003
- C.A. Haynam et al., "National Ignition Facility laser performance status," Appl. Opt., vol. 46, no. 16, pp. 3276-3303, 2007 https://doi.org/10.1364/AO.46.003276
- J. Ebrardt and J.M. Chaput,"LMJ project status,"J. Phys.: Conf. Series, vol. 112, p. 032005, 2008 https://doi.org/10.1088/1742-6596/112/3/032005
- M.D. Perry et al.,"Petawatt laser pulses,"Opt. Lett., vol. 24, no. 3, pp. 160-162, 1999 https://doi.org/10.1364/OL.24.000160
- Y. Kitagawa et al., "Prepulse-free petawatt laser for a fast ignitor," IEEE J. Quantum Electron., vol. 40, no. 3, pp. 281- 293, 2004 https://doi.org/10.1109/JQE.2003.823043
- K. Yamakawa, "Table top lasers create ultrahigh peak powers," Oyo-Butsuri, vol. 73, no. 2, pp. 186-193, 2004 (in Japanese)
- http://www.extreme-light-infrastructure.eu/
- R. Kodama et al., "Fast-heating of ultra-high density plasma as a step toward laser fusion ignition," Nature, vol. 412, no. 6489, pp. 798-802, 2001 https://doi.org/10.1038/35090525
- H. Azechi and FIREX project, "The FIREX program on the way to inertial fusion energy," J. Phys.: Conf. Series, vol. 112, p. 012002, 2008 https://doi.org/10.1088/1742-6596/112/1/012002
- A. J. Bayramian et al., "Activation of the Mercury laser system: A diode-pumped solid-state laser driver for inertial fusion," Proc. Inertial Fusion Science and Applications (IFSA) 2001, pp.459-464, ed. K.A. Tanaka et al., Elsevier, 2002
- T. Kawashima et al., "Design and performance of a diodepumped Nd:silica-phosphate glass zig-zag slab laser amplifier for the inertial fusion energy," Jpn, J. Appl. Phys., vol. 40, no. 11, pp. 6415-6425, 2001 https://doi.org/10.1143/JJAP.40.6415
- R. Yasuhara et al., "213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror," Opt. Lett., vol. 33, no. 15, pp. 1711-1713, 2008 https://doi.org/10.1364/OL.33.001711
- S. Bahbah et al., "High power Yb:YAG diode pumped Lucia front-end oscillator (250mJ, 50ns, 2Hz)," J. Phys.: Conf. Series, vol. 112, p. 032053, 2008 https://doi.org/10.1088/1742-6596/112/3/032053
- J. Hein et al., "Polaris: An all diode-pumped ultrahigh peak power laser for high repetition rates," in Lasers and nuclei, pp.47-66, ed. H. Schwoerer, J. Magil and B. Beleites, Springer, 2006 https://doi.org/10.1007/3-540-30272-7_4
- B. A. Remington et al., "A review of astrophysics experiments on intense lasers," Phys. Plasmas, vol. 7, no. 5, pp. 1641-1652, 2000 https://doi.org/10.1063/1.874046
- M. Ikoma et al., "Unveiling the interior of Jupiter with high-power lasers: equation of state of hydrogen at several 100 GPa," J. Plasma Fusion Res., vol. 84, no. 2, pp. 93-99, 2008 (in Japanese)
- K. Shigemori et al., "Measurement of sound velocity of laser-irradiated iron foils relevant to Earth core condition," Eur. Phys. J. D, vol. 44, pp. 301-305, 2007 https://doi.org/10.1140/epjd/e2007-00142-5
- K. Shigemori et al., "Multiple shock compression of diamond foils with a shaped laser pulse over 1 TPa," J. Phys.: Conf. Series, vol. 112, p. 042023, 2008 https://doi.org/10.1088/1742-6596/112/4/042023
- T. E. Cowan et al., "Photonuclear fission from high energy electrons from ultraintense laser-solid interactions," Phys. Rev Lett., vol. 84, no. 5, pp. 903-906, 2000 https://doi.org/10.1103/PhysRevLett.84.903
- A. V. Andreev, V.M. Gordienko and A.B. Savel'ev, "Nuclear processes in a high-temperature plasma by an ultrashort laser pulse," Quantum Electron., vol. 31, no. 11, pp. 941-956, 2001 https://doi.org/10.1070/QE2001v031n11ABEH002081
- M. Borghesi et al., "Fast ion generation by high-intensity laser irradiation of solid target and applications," Fusion Sci. Technol., vol. 49, no. 4, pp. 412-439, 2006
- H. Schwoere,"High-intensity laser-matter interaction," in Lasers and nuclei, pp.7-24, ed. H. Schwoerer, J. Magil and B. Beleites, Springer, 2006 https://doi.org/10.1007/3-540-30272-7_2
- S.P.D. Mangles et al., "Monoenergetic beams of relativistic electrons from intense laser-plasma interactions," Nature, vol. 431, no. 7008, pp. 535-541, 2004 https://doi.org/10.1038/nature02939
- C.G.R. Geddes et al., "High-quality electron beams from a laser wakefield accelerator using plasama-channel guiding," Nature, vol. 431, no. 7008, pp. 538-541, 2004 https://doi.org/10.1038/nature02900
- J. Faure et al., “A laser-plasma accelerator producing monoenergetic electron beams,” Nature, vol. 431, no. 7008, pp. 541-544, 2004 https://doi.org/10.1038/nature02963
- W. P. Leemans et al., "GeV electron beams from a centimeter-scale accelerator," Nature Phys., vol. 2, no. 10, pp. 696-699, 2006 https://doi.org/10.1038/nphys418
- V. Malka, J. Faure, S. Fritzer, and Y. Glinec, "Electron and proton beams produced by ultrashort laser pulses," in Lasers and nuclei, pp.81-90, ed. H. Schwoerer, J. Magil and B. Beleites, Springer, 2006 https://doi.org/10.1007/3-540-30272-7_6
- E. L. Clark et al., "Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids," Phys. Rev. Lett., vol. 84, no. 4, pp. 670-673, 2000 https://doi.org/10.1103/PhysRevLett.84.670
- R.A. Snavely et al., "Intense high energy proton beams from petawatt-laser irradiation of solids," Phys. Rev. Lett., vol. 85, no. 14, pp. 2945-2948, 2000 https://doi.org/10.1103/PhysRevLett.85.2945
- S.C. Wilks et al., "Energetic proton generation in ultraintense laser-solid interactions," Phys. Plasmas, vol. 8, no. 2, 542-549, 2001 https://doi.org/10.1063/1.1333697
- M. Hegelich et al., "MeV ion jets from short-pulse-laser interaction with thin foils," Phys. Rev. Lett. 89, 085002 (2002) https://doi.org/10.1103/PhysRevLett.89.085002
- P. MaKenna et al., "Proton and heavier ion acceleration in ultrahigh intensity laser-interactions with heated target fiols," Phys. Rev. E 70, 036405 (2004) https://doi.org/10.1103/PhysRevE.70.036405
- L. Robson et al., "Scaling of proton acceleration driven by patawatt-laser-plasma interactions," Nature Phys., vol. 3, no. 1, pp. 58-62, 2007 https://doi.org/10.1038/nphys476
- H. Takabe et al.,"Laser Nuclear Physics,"J. Plasma Fusion Res., vol. 77, no. 11, pp. 1094-1136, 2001 (Special Topic Article)
- H. Takabe,"Laser Nuclear Physics,"AAPPS Bulletin, vol. 13, no. 1, pp. 18-25, 2003
- K.W.D. Ledingham, P. Mc Kenna, and R.P. Singhal, Applications "for nuclear phenomena generated by ultraintense lasers," Science, vol. 300, pp. 1107-1111, 2003 https://doi.org/10.1126/science.1080552
- F. Ewald,"Laser-triggerd nuclear reactions,"in Lasers and nuclei, pp.25-45, ed. H. Schwoerer, J. Magil and B. Beleites, Springer, 2006
- M.D. Perry et al., "Hard x-ray production from high intensity laser solid interactions," Rev. Sci. Instrum., vol. 70, no. 1, pp. 265-269, 1999 https://doi.org/10.1063/1.1149442
- K.W.D. Ledingham et al., "Photonuclear physics when multiterawtt laser pulse interacys with solid targets," Phys. Rev. Lett, vol. 84, no. 5, pp. 899-902, 2000 https://doi.org/10.1103/PhysRevLett.84.899
- H. Schwoerer et al., "MeV X rays and photoneutrons from femtosecond laser-produced plasmas," Phys. Rev. Lett., vol. 86, no. 11, pp. 2317-2320, 2001 https://doi.org/10.1103/PhysRevLett.86.2317
- P. McKenna et al., "Broad energy spectrum of laseraccelerated protons for spallation-related physics," Phys. Rev. Lett., vol. 94, p. 084801, 2005 https://doi.org/10.1103/PhysRevLett.94.084801
- S.V. Bulanov et al., “Oncological hadrontherapy with laser ion accelerators,” Phys. Lett. A, vol. 299, no. 2-3, pp. 240-247, 2002 https://doi.org/10.1016/S0375-9601(02)00521-2
- S.V. Bulanov and V.S. Khoroshkov, "Feasibility of using laser ion accelerators in proton therapy," Plasma Phys. Rep., vol. 28, pp. 453-457, 2002 https://doi.org/10.1134/1.1478534
- E. Foulkal and C. Ma, "Laser accelerated carbon ion beams for radiation therapy," Med. Phys., vol. 30, p. 1448, 2003
- V. Malka et al., "Practicability of protontherapy using compact laser systems," Med. Phys., vol. 31, no. 6, pp. 1587-1592, 2004 https://doi.org/10.1118/1.1747751
- E. Foulkal et al., "Energy and intensity modulated radiation therapy using laser accelerated proton beams," Med. Phys., vol. 31, p. 1884, 2004
- L. Robson et al., "High-power laser production of PET isotopes," in Lasers and nuclei, pp.191-204, ed. H. Schwoerer, J. Magil and B. Beleites, Springer, 2006 https://doi.org/10.1007/3-540-30272-7_12
- M.I.K. Santala et al., "Production of radioactive nuclides by energetic protons generated from intense laser-plasma interactions," Appl. Phys. Lett., vol 78, no. 1, pp. 19-21, 2001 https://doi.org/10.1063/1.1335849
- S. Fritzler et al., "Proton beams generated with highintensity lasers: Applications to medical isotope production," Appl. Phys. Lett., vol. 83, no. 15, pp. 3039-3041, 2003 https://doi.org/10.1063/1.1616661
- K.W.D. Ledingham et al., "High power laser production of short-lived isotopes for positron emission tomography," J. Phys. D: Appl. Phys., vol. 37, pp. 23412345, 2004 https://doi.org/10.1088/0022-3727/37/16/019
- D. Li, K. Imasaki, and M. Aoki, "Analysis on coupling gamma-ray to nuclear giant resonance," J. Nucl. Sci. Technol., vol. 39, no. 11. pp. 1247-1249, 2002 https://doi.org/10.3327/jnst.39.1247
-
K.W.D. Ledingham et al, "Laser-driven photo-transmutation of
$^{129}I-a long-lived$ nuclear waste product," J. Phys. D: Appl. Phys., vol. 36, pp. L79-L82, 2003 https://doi.org/10.1088/0022-3727/36/18/L01 - J. Magil et al.,"Laser transmutation of iodine-129,"Appl. Phys. B, vol. 77, pp. 387-390, 2003 https://doi.org/10.1007/s00340-003-1306-4
- J. Magil, J. Galy, and T. Zagar, "Laser transmutation of nuclear materials," in Lasers and nuclei, pp.131-146, ed. H. Schwoerer, J. Magil and B. Beleites, Springer, 2006 https://doi.org/10.1007/3-540-30272-7_9
-
K. Imasaki et al., "High brightness
$\gamma$ -ray generation and nuclear transmutation," in Lasers and nuclei, pp. 147-168, ed. H. Schwoerer, J. Magil and B. Beleites, Springer, 2006 - L.J. Perkins et al., "The investigation of high intensity laser driven micro neutron sources for fusion materials research at high fluence", Nuclear Fusion, vol. 40, no. 1, pp. 1-19, 2001 https://doi.org/10.1088/0029-5515/40/1/301
- A. Taylor et al., "A route to the brightest possible neutron source?," Science, vol. 315, pp. 1092-1095, 2007 https://doi.org/10.1126/science.1127185
- S. Nakai, "Development of integrated IFE system and its industrial applications as intense neutron source," J. Phys.: Conf. Series, vol. 112, p. 042070, 2008 https://doi.org/10.1088/1742-6596/112/4/042070
- T. Zagar, J. Galy, and J. Magil, "Pulsed neutron sources by table-top accelerated protons," in Lasers and nuclei, pp. 109-128, ed. H. Schwoerer, J. Magil and B. Beleites, Springer, 2006
- T. Ditmire et al., "Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters," Nature, vol. 398, pp. 489-492, 1999 https://doi.org/10.1038/19037
- J.M. Yang et al., "Neutron production by fast protons from ultraintense lase-plasma interactions," J. Appl. Phys., vol. 96, no. 11, pp. 6912-6918, 2004 https://doi.org/10.1063/1.1814421
-
K.L. Lancaster et al., "Characterization of
$^7Li(p,n)^7$ Be neutron yields from laser produced ion beams for fast neutron radiography," Phys. Plasmas, vol 11, no. 7, pp. 3404-3408, 2004 https://doi.org/10.1063/1.1756911 - J. Kawanaka et al., "Generation of energetic beam ultimate (GENBU) laser -main laser-," Technical digest of APLS 2008, p. 56, Nagoya, Jan. 2008
- K. Yamakawa et al., "Generation of energetic beam ultimate (GENBU) laser -OPCPA laser-," Technical digest of APLS 2008, p. 57, Nagoya, Jan. 2008
- S. Tokita et al., "Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers," Appl. Phys. B, vol. 80, pp. 635-638, 2005 https://doi.org/10.1007/s00340-005-1779-4
- A. Dubietis et al., "Powerful femtosecond pulse generation by chirped and stretched pulse parametric ampkification in BBO crystal," Opt. Commun., vol. 88, pp. 437-440, 1992 https://doi.org/10.1016/0030-4018(92)90070-8
-
H. Yoshida et al., "High-power and high-contrast optical parametric chirped pulse amplification in
$\beta-BaB_2O_4$ crystal," Opt. Lett., vol. 28, no. 4, pp. 257-259, 2003 https://doi.org/10.1364/OL.28.000257 - J. Kawanaka et al., "New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic," J. Phys.: Conf. Series, vol. 112, p. 032058, 2008 https://doi.org/10.1088/1742-6596/112/3/032058
-
K. Ogawa et al., "Multi-millijoule, diode pumped, cryogenically-cooled
$Yb:KY(WO_4)_2$ chirped-pulse regenerative amplifier," Opt. Exp., vol. 15, no. 14, pp. 8598-8602, 2007 https://doi.org/10.1364/OE.15.008598 -
K. Yamakawa et al., "Ultra-broadband optical parametric chirped-pulse amplification using an
$Yb: LiYF_4$ chirped pulse amplification pump laser," Opt. Exp., vol. 15, no. 8, pp. 5018-5023, 2007 https://doi.org/10.1364/OE.15.005018 - Y. Akahane et al., "High-energy, diode-pumped, picosecond Yb:YAG chirped pulse regenerative amplifier for pumping optical parametric chirped-pulse amplification," Opt. Lett., vol. 32, no. 13, pp. 1899-1901, 2007 https://doi.org/10.1364/OL.32.001899
- R. Kodama et al.,"Fast heating scalable to laser fusion ignition," Nature, vol. 418, no. 6901, pp. 933-934, 2002 https://doi.org/10.1038/418933a
- N.A.M. Hafz et al., "Stable generation of GeV-class electron beams from self-guided laserplasma channels," Nature Photonics, vol. 2, no. 9, pp. 971-977, 2008 https://doi.org/10.1038/nphoton.2008.155
Cited by
- International and Asian Networks on Intense Laser Science vol.13, pp.1, 2009, https://doi.org/10.3807/JOSK.2009.13.1.002
- Multi-kilowatt Single-mode Ytterbium-doped Large-core Fiber Laser vol.13, pp.4, 2009, https://doi.org/10.3807/JOSK.2009.13.4.416
- The all-diode-pumped laser system POLARIS – an experimentalist’s tool generating ultra-high contrast pulses with high energy vol.2, 2014, https://doi.org/10.1017/hpl.2014.26
- Improvement of Proton Beam Quality from the High-intensity Short Pulse Laser Interaction with a Micro-structured Target vol.13, pp.1, 2009, https://doi.org/10.3807/JOSK.2009.13.1.022
- Generation of 25-TW Femtosecond Laser Pulses at 515 nm with Extremely High Temporal Contrast vol.5, pp.4, 2015, https://doi.org/10.3390/app5041970
- Super-intense femtosecond multichannel laser system with coherent beam combining vol.24, pp.7, 2014, https://doi.org/10.1088/1054-660X/24/7/074016
- The diffraction propagation properties of double-half inverse Gaussian hollow beams vol.56, 2014, https://doi.org/10.1016/j.optlastec.2013.09.019
- 166 J chirped femtosecond laser pulses from a diode-pumped Yb:CaF_2 amplifier vol.39, pp.6, 2014, https://doi.org/10.1364/OL.39.001333
- Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers vol.24, pp.26, 2016, https://doi.org/10.1364/OE.24.030015