DOI QR코드

DOI QR Code

High Power Lasers and Their New Applications

  • Received : 2008.08.20
  • Accepted : 2008.09.11
  • Published : 2008.09.25

Abstract

Recent progress in high power lasers enables us to access a regime of high-energy-density and/or ultra-strong fields that was not accessible before, opening up a fundamentally new physical domain which includes laboratory astrophysics and laser nuclear physics. In this article, new applications of high-energy and ultra-intense laser will be reviewed.

Keywords

References

  1. C. Yamanaka et al., "Laser-implosion of high-aspect-ratio targets produces thermonuclear neutron yields exceeding $10^{12}$ by use of shock multiplexing," Phys. Rev. Lett., vol. 56, no. 15, pp. 1575-1578, 1986 https://doi.org/10.1103/PhysRevLett.56.1575
  2. H. Azechi et al., "High density compression experiments at ILE, Osaka," Laser and Particle Beams, vol. 9, no. 2, pp. 193-207, 1991 https://doi.org/10.1017/S0263034600003281
  3. E.I. Moses,"Ignition on the National Ignition Facility," J. Phys.: Conf. Series, vol. 112, p. 012003, 2008 https://doi.org/10.1088/1742-6596/112/1/012003
  4. C.A. Haynam et al., "National Ignition Facility laser performance status," Appl. Opt., vol. 46, no. 16, pp. 3276-3303, 2007 https://doi.org/10.1364/AO.46.003276
  5. J. Ebrardt and J.M. Chaput,"LMJ project status,"J. Phys.: Conf. Series, vol. 112, p. 032005, 2008 https://doi.org/10.1088/1742-6596/112/3/032005
  6. M.D. Perry et al.,"Petawatt laser pulses,"Opt. Lett., vol. 24, no. 3, pp. 160-162, 1999 https://doi.org/10.1364/OL.24.000160
  7. Y. Kitagawa et al., "Prepulse-free petawatt laser for a fast ignitor," IEEE J. Quantum Electron., vol. 40, no. 3, pp. 281- 293, 2004 https://doi.org/10.1109/JQE.2003.823043
  8. K. Yamakawa, "Table top lasers create ultrahigh peak powers," Oyo-Butsuri, vol. 73, no. 2, pp. 186-193, 2004 (in Japanese)
  9. http://www.extreme-light-infrastructure.eu/
  10. R. Kodama et al., "Fast-heating of ultra-high density plasma as a step toward laser fusion ignition," Nature, vol. 412, no. 6489, pp. 798-802, 2001 https://doi.org/10.1038/35090525
  11. H. Azechi and FIREX project, "The FIREX program on the way to inertial fusion energy," J. Phys.: Conf. Series, vol. 112, p. 012002, 2008 https://doi.org/10.1088/1742-6596/112/1/012002
  12. A. J. Bayramian et al., "Activation of the Mercury laser system: A diode-pumped solid-state laser driver for inertial fusion," Proc. Inertial Fusion Science and Applications (IFSA) 2001, pp.459-464, ed. K.A. Tanaka et al., Elsevier, 2002
  13. T. Kawashima et al., "Design and performance of a diodepumped Nd:silica-phosphate glass zig-zag slab laser amplifier for the inertial fusion energy," Jpn, J. Appl. Phys., vol. 40, no. 11, pp. 6415-6425, 2001 https://doi.org/10.1143/JJAP.40.6415
  14. R. Yasuhara et al., "213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror," Opt. Lett., vol. 33, no. 15, pp. 1711-1713, 2008 https://doi.org/10.1364/OL.33.001711
  15. S. Bahbah et al., "High power Yb:YAG diode pumped Lucia front-end oscillator (250mJ, 50ns, 2Hz)," J. Phys.: Conf. Series, vol. 112, p. 032053, 2008 https://doi.org/10.1088/1742-6596/112/3/032053
  16. J. Hein et al., "Polaris: An all diode-pumped ultrahigh peak power laser for high repetition rates," in Lasers and nuclei, pp.47-66, ed. H. Schwoerer, J. Magil and B. Beleites, Springer, 2006 https://doi.org/10.1007/3-540-30272-7_4
  17. B. A. Remington et al., "A review of astrophysics experiments on intense lasers," Phys. Plasmas, vol. 7, no. 5, pp. 1641-1652, 2000 https://doi.org/10.1063/1.874046
  18. M. Ikoma et al., "Unveiling the interior of Jupiter with high-power lasers: equation of state of hydrogen at several 100 GPa," J. Plasma Fusion Res., vol. 84, no. 2, pp. 93-99, 2008 (in Japanese)
  19. K. Shigemori et al., "Measurement of sound velocity of laser-irradiated iron foils relevant to Earth core condition," Eur. Phys. J. D, vol. 44, pp. 301-305, 2007 https://doi.org/10.1140/epjd/e2007-00142-5
  20. K. Shigemori et al., "Multiple shock compression of diamond foils with a shaped laser pulse over 1 TPa," J. Phys.: Conf. Series, vol. 112, p. 042023, 2008 https://doi.org/10.1088/1742-6596/112/4/042023
  21. T. E. Cowan et al., "Photonuclear fission from high energy electrons from ultraintense laser-solid interactions," Phys. Rev Lett., vol. 84, no. 5, pp. 903-906, 2000 https://doi.org/10.1103/PhysRevLett.84.903
  22. A. V. Andreev, V.M. Gordienko and A.B. Savel'ev, "Nuclear processes in a high-temperature plasma by an ultrashort laser pulse," Quantum Electron., vol. 31, no. 11, pp. 941-956, 2001 https://doi.org/10.1070/QE2001v031n11ABEH002081
  23. M. Borghesi et al., "Fast ion generation by high-intensity laser irradiation of solid target and applications," Fusion Sci. Technol., vol. 49, no. 4, pp. 412-439, 2006
  24. H. Schwoere,"High-intensity laser-matter interaction," in Lasers and nuclei, pp.7-24, ed. H. Schwoerer, J. Magil and B. Beleites, Springer, 2006 https://doi.org/10.1007/3-540-30272-7_2
  25. S.P.D. Mangles et al., "Monoenergetic beams of relativistic electrons from intense laser-plasma interactions," Nature, vol. 431, no. 7008, pp. 535-541, 2004 https://doi.org/10.1038/nature02939
  26. C.G.R. Geddes et al., "High-quality electron beams from a laser wakefield accelerator using plasama-channel guiding," Nature, vol. 431, no. 7008, pp. 538-541, 2004 https://doi.org/10.1038/nature02900
  27. J. Faure et al., “A laser-plasma accelerator producing monoenergetic electron beams,” Nature, vol. 431, no. 7008, pp. 541-544, 2004 https://doi.org/10.1038/nature02963
  28. W. P. Leemans et al., "GeV electron beams from a centimeter-scale accelerator," Nature Phys., vol. 2, no. 10, pp. 696-699, 2006 https://doi.org/10.1038/nphys418
  29. V. Malka, J. Faure, S. Fritzer, and Y. Glinec, "Electron and proton beams produced by ultrashort laser pulses," in Lasers and nuclei, pp.81-90, ed. H. Schwoerer, J. Magil and B. Beleites, Springer, 2006 https://doi.org/10.1007/3-540-30272-7_6
  30. E. L. Clark et al., "Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids," Phys. Rev. Lett., vol. 84, no. 4, pp. 670-673, 2000 https://doi.org/10.1103/PhysRevLett.84.670
  31. R.A. Snavely et al., "Intense high energy proton beams from petawatt-laser irradiation of solids," Phys. Rev. Lett., vol. 85, no. 14, pp. 2945-2948, 2000 https://doi.org/10.1103/PhysRevLett.85.2945
  32. S.C. Wilks et al., "Energetic proton generation in ultraintense laser-solid interactions," Phys. Plasmas, vol. 8, no. 2, 542-549, 2001 https://doi.org/10.1063/1.1333697
  33. M. Hegelich et al., "MeV ion jets from short-pulse-laser interaction with thin foils," Phys. Rev. Lett. 89, 085002 (2002) https://doi.org/10.1103/PhysRevLett.89.085002
  34. P. MaKenna et al., "Proton and heavier ion acceleration in ultrahigh intensity laser-interactions with heated target fiols," Phys. Rev. E 70, 036405 (2004) https://doi.org/10.1103/PhysRevE.70.036405
  35. L. Robson et al., "Scaling of proton acceleration driven by patawatt-laser-plasma interactions," Nature Phys., vol. 3, no. 1, pp. 58-62, 2007 https://doi.org/10.1038/nphys476
  36. H. Takabe et al.,"Laser Nuclear Physics,"J. Plasma Fusion Res., vol. 77, no. 11, pp. 1094-1136, 2001 (Special Topic Article)
  37. H. Takabe,"Laser Nuclear Physics,"AAPPS Bulletin, vol. 13, no. 1, pp. 18-25, 2003
  38. K.W.D. Ledingham, P. Mc Kenna, and R.P. Singhal, Applications "for nuclear phenomena generated by ultraintense lasers," Science, vol. 300, pp. 1107-1111, 2003 https://doi.org/10.1126/science.1080552
  39. F. Ewald,"Laser-triggerd nuclear reactions,"in Lasers and nuclei, pp.25-45, ed. H. Schwoerer, J. Magil and B. Beleites, Springer, 2006
  40. M.D. Perry et al., "Hard x-ray production from high intensity laser solid interactions," Rev. Sci. Instrum., vol. 70, no. 1, pp. 265-269, 1999 https://doi.org/10.1063/1.1149442
  41. K.W.D. Ledingham et al., "Photonuclear physics when multiterawtt laser pulse interacys with solid targets," Phys. Rev. Lett, vol. 84, no. 5, pp. 899-902, 2000 https://doi.org/10.1103/PhysRevLett.84.899
  42. H. Schwoerer et al., "MeV X rays and photoneutrons from femtosecond laser-produced plasmas," Phys. Rev. Lett., vol. 86, no. 11, pp. 2317-2320, 2001 https://doi.org/10.1103/PhysRevLett.86.2317
  43. P. McKenna et al., "Broad energy spectrum of laseraccelerated protons for spallation-related physics," Phys. Rev. Lett., vol. 94, p. 084801, 2005 https://doi.org/10.1103/PhysRevLett.94.084801
  44. S.V. Bulanov et al., “Oncological hadrontherapy with laser ion accelerators,” Phys. Lett. A, vol. 299, no. 2-3, pp. 240-247, 2002 https://doi.org/10.1016/S0375-9601(02)00521-2
  45. S.V. Bulanov and V.S. Khoroshkov, "Feasibility of using laser ion accelerators in proton therapy," Plasma Phys. Rep., vol. 28, pp. 453-457, 2002 https://doi.org/10.1134/1.1478534
  46. E. Foulkal and C. Ma, "Laser accelerated carbon ion beams for radiation therapy," Med. Phys., vol. 30, p. 1448, 2003
  47. V. Malka et al., "Practicability of protontherapy using compact laser systems," Med. Phys., vol. 31, no. 6, pp. 1587-1592, 2004 https://doi.org/10.1118/1.1747751
  48. E. Foulkal et al., "Energy and intensity modulated radiation therapy using laser accelerated proton beams," Med. Phys., vol. 31, p. 1884, 2004
  49. L. Robson et al., "High-power laser production of PET isotopes," in Lasers and nuclei, pp.191-204, ed. H. Schwoerer, J. Magil and B. Beleites, Springer, 2006 https://doi.org/10.1007/3-540-30272-7_12
  50. M.I.K. Santala et al., "Production of radioactive nuclides by energetic protons generated from intense laser-plasma interactions," Appl. Phys. Lett., vol 78, no. 1, pp. 19-21, 2001 https://doi.org/10.1063/1.1335849
  51. S. Fritzler et al., "Proton beams generated with highintensity lasers: Applications to medical isotope production," Appl. Phys. Lett., vol. 83, no. 15, pp. 3039-3041, 2003 https://doi.org/10.1063/1.1616661
  52. K.W.D. Ledingham et al., "High power laser production of short-lived isotopes for positron emission tomography," J. Phys. D: Appl. Phys., vol. 37, pp. 23412345, 2004 https://doi.org/10.1088/0022-3727/37/16/019
  53. D. Li, K. Imasaki, and M. Aoki, "Analysis on coupling gamma-ray to nuclear giant resonance," J. Nucl. Sci. Technol., vol. 39, no. 11. pp. 1247-1249, 2002 https://doi.org/10.3327/jnst.39.1247
  54. K.W.D. Ledingham et al, "Laser-driven photo-transmutation of $^{129}I-a long-lived$ nuclear waste product," J. Phys. D: Appl. Phys., vol. 36, pp. L79-L82, 2003 https://doi.org/10.1088/0022-3727/36/18/L01
  55. J. Magil et al.,"Laser transmutation of iodine-129,"Appl. Phys. B, vol. 77, pp. 387-390, 2003 https://doi.org/10.1007/s00340-003-1306-4
  56. J. Magil, J. Galy, and T. Zagar, "Laser transmutation of nuclear materials," in Lasers and nuclei, pp.131-146, ed. H. Schwoerer, J. Magil and B. Beleites, Springer, 2006 https://doi.org/10.1007/3-540-30272-7_9
  57. K. Imasaki et al., "High brightness $\gamma$-ray generation and nuclear transmutation," in Lasers and nuclei, pp. 147-168, ed. H. Schwoerer, J. Magil and B. Beleites, Springer, 2006
  58. L.J. Perkins et al., "The investigation of high intensity laser driven micro neutron sources for fusion materials research at high fluence", Nuclear Fusion, vol. 40, no. 1, pp. 1-19, 2001 https://doi.org/10.1088/0029-5515/40/1/301
  59. A. Taylor et al., "A route to the brightest possible neutron source?," Science, vol. 315, pp. 1092-1095, 2007 https://doi.org/10.1126/science.1127185
  60. S. Nakai, "Development of integrated IFE system and its industrial applications as intense neutron source," J. Phys.: Conf. Series, vol. 112, p. 042070, 2008 https://doi.org/10.1088/1742-6596/112/4/042070
  61. T. Zagar, J. Galy, and J. Magil, "Pulsed neutron sources by table-top accelerated protons," in Lasers and nuclei, pp. 109-128, ed. H. Schwoerer, J. Magil and B. Beleites, Springer, 2006
  62. T. Ditmire et al., "Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters," Nature, vol. 398, pp. 489-492, 1999 https://doi.org/10.1038/19037
  63. J.M. Yang et al., "Neutron production by fast protons from ultraintense lase-plasma interactions," J. Appl. Phys., vol. 96, no. 11, pp. 6912-6918, 2004 https://doi.org/10.1063/1.1814421
  64. K.L. Lancaster et al., "Characterization of $^7Li(p,n)^7$Be neutron yields from laser produced ion beams for fast neutron radiography," Phys. Plasmas, vol 11, no. 7, pp. 3404-3408, 2004 https://doi.org/10.1063/1.1756911
  65. J. Kawanaka et al., "Generation of energetic beam ultimate (GENBU) laser -main laser-," Technical digest of APLS 2008, p. 56, Nagoya, Jan. 2008
  66. K. Yamakawa et al., "Generation of energetic beam ultimate (GENBU) laser -OPCPA laser-," Technical digest of APLS 2008, p. 57, Nagoya, Jan. 2008
  67. S. Tokita et al., "Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers," Appl. Phys. B, vol. 80, pp. 635-638, 2005 https://doi.org/10.1007/s00340-005-1779-4
  68. A. Dubietis et al., "Powerful femtosecond pulse generation by chirped and stretched pulse parametric ampkification in BBO crystal," Opt. Commun., vol. 88, pp. 437-440, 1992 https://doi.org/10.1016/0030-4018(92)90070-8
  69. H. Yoshida et al., "High-power and high-contrast optical parametric chirped pulse amplification in $\beta-BaB_2O_4$ crystal," Opt. Lett., vol. 28, no. 4, pp. 257-259, 2003 https://doi.org/10.1364/OL.28.000257
  70. J. Kawanaka et al., "New concept for laser fusion energy driver by using cryogenically-cooled Yb:YAG ceramic," J. Phys.: Conf. Series, vol. 112, p. 032058, 2008 https://doi.org/10.1088/1742-6596/112/3/032058
  71. K. Ogawa et al., "Multi-millijoule, diode pumped, cryogenically-cooled $Yb:KY(WO_4)_2$ chirped-pulse regenerative amplifier," Opt. Exp., vol. 15, no. 14, pp. 8598-8602, 2007 https://doi.org/10.1364/OE.15.008598
  72. K. Yamakawa et al., "Ultra-broadband optical parametric chirped-pulse amplification using an $Yb: LiYF_4$ chirped pulse amplification pump laser," Opt. Exp., vol. 15, no. 8, pp. 5018-5023, 2007 https://doi.org/10.1364/OE.15.005018
  73. Y. Akahane et al., "High-energy, diode-pumped, picosecond Yb:YAG chirped pulse regenerative amplifier for pumping optical parametric chirped-pulse amplification," Opt. Lett., vol. 32, no. 13, pp. 1899-1901, 2007 https://doi.org/10.1364/OL.32.001899
  74. R. Kodama et al.,"Fast heating scalable to laser fusion ignition," Nature, vol. 418, no. 6901, pp. 933-934, 2002 https://doi.org/10.1038/418933a
  75. N.A.M. Hafz et al., "Stable generation of GeV-class electron beams from self-guided laserplasma channels," Nature Photonics, vol. 2, no. 9, pp. 971-977, 2008 https://doi.org/10.1038/nphoton.2008.155

Cited by

  1. International and Asian Networks on Intense Laser Science vol.13, pp.1, 2009, https://doi.org/10.3807/JOSK.2009.13.1.002
  2. Multi-kilowatt Single-mode Ytterbium-doped Large-core Fiber Laser vol.13, pp.4, 2009, https://doi.org/10.3807/JOSK.2009.13.4.416
  3. The all-diode-pumped laser system POLARIS – an experimentalist’s tool generating ultra-high contrast pulses with high energy vol.2, 2014, https://doi.org/10.1017/hpl.2014.26
  4. Improvement of Proton Beam Quality from the High-intensity Short Pulse Laser Interaction with a Micro-structured Target vol.13, pp.1, 2009, https://doi.org/10.3807/JOSK.2009.13.1.022
  5. Generation of 25-TW Femtosecond Laser Pulses at 515 nm with Extremely High Temporal Contrast vol.5, pp.4, 2015, https://doi.org/10.3390/app5041970
  6. Super-intense femtosecond multichannel laser system with coherent beam combining vol.24, pp.7, 2014, https://doi.org/10.1088/1054-660X/24/7/074016
  7. The diffraction propagation properties of double-half inverse Gaussian hollow beams vol.56, 2014, https://doi.org/10.1016/j.optlastec.2013.09.019
  8. 166 J chirped femtosecond laser pulses from a diode-pumped Yb:CaF_2 amplifier vol.39, pp.6, 2014, https://doi.org/10.1364/OL.39.001333
  9. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers vol.24, pp.26, 2016, https://doi.org/10.1364/OE.24.030015