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1. Introduction

Once a research topic, virtualization is a techno—
logy now easily available to end users, Thanks to in—
dustry efforts in product development, users can run
Windows applications on their Linux desktop with
seamlessly integrated window management, Others play
DirectX—based Windows games within the OpenGL-
based Mac OS X environment, using full hardware
acceleration by the GPU, Virtual machines are used
to test potentially malicious software without risking
the host environment and they help developers in de—
bugging crashes with back—in—time execution,

In the server world, virtual machines are used to
consolidate multiple services previously located on de—
dicated machines, Running them within virtual machines
on one physical server eases management and helps
saving power by increasing utilization. In server farms,
migration of virtual machines between servers is used
to balance load with the potential of shutting down
completely unloaded servers or adding more to increase
-capacity, Lastly, virtual machines also isolate different
customers who can purchase virtual shares of a phy—
sical server in a data center.

We will revisit those use cases in Section 2, dis—
cussing their relationship to virtualization technology
in more detail, They demonstrate that virtualization
is a systems technology that is now widely adopted
and has become a major industry force,

Another interesting systems technology that has
not yet gained so much public attention is micro—
kernels, Kernels of today's desktop operating systems
are typically monolithic, Operating system services

ranging from file systems to networking and from
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user management to paging are running in the CPU
privileged mode, This includes device drivers, which
are a major source of operating system bugs, The
monolithic design makes it hard to assure global sys—
tem properties like real—time capability, security policies
or robustness properties, because every component of
the large code base running in privileged mode can
interfere with these properties, Microkernels offer a
way out of this dilemma by minimizing the code runn—
ing in privileged mode and providing mechanisms for
a well—structured user land particularly suited to the
task at hand, Consequently, microkernels have been
used successfully to implement security—sensitive and
real—time systems, Firsi generation microkernels were
considered slow, but with the 14 family of micro—
kernels, this drawback has been overcome, However,
with the Hurd [7] still unfinished, microkernels miss
a widely adopted native execution environment for
general purpose applications, This lack can be miti—
gated by virtualization, Section 3 gives some back—
ground on microkernels, including a historical overview -
and their scientific achievements,

In Section 4, we will explore, how microkernel and
virtualization technologies can be combined for mu-
tual benefit, Virtualization can provide the required
application support on top of a microkernel system,
while the microkernel can contribute its unique system
design, enabling the construction of platforms with
properties beyond today's systems,

Section 5 concludes the paper and provides an outlook,

2. Virtualization

The term virtualization is being used inflationary

to describe various different technologies, In its most



general meaning, virtualization stands for an abstrac—
tion of resources that provides a logical rather than
an actual physical incarnation of those resources, It
{ypically involves a change in numbers and func—
tionality, so actual resources are either multiplexed
or aggregated to virtual resources, The differentia—
tion now stems from the various levels of abstraction
and the resource being abstracted.

The well-known term of a virtual machine (VM) de—
scribes a self—contained execution environment imple—
mented by software rather than physical circuitry,
Other resources like networks or file systems can be
virtualized with the VPN or VPES [27] technologies,
Traversing the abstraction levels, we can single out
different virtualization flavors also subsumed under

the common name,

2.1 Flavors

To discuss advantages and shortcomings of the vir—
tualization variants, we need criteria to judge them,
The most common qualitative benchmark is provided
by Popek and Goldberg's classical requirements for vir—
tualization [22], which we briefly summarize in the
following:

Efficiency requires the majority of operations to be
performed on actual resources rather than being inter—
cepted by the virtualization layer,

Resource Control requires the virtualization layer to
be in complete control of the virtualized resources.
There should be no uncontrolled way to bypass the
virtualization,

Equivalence requires the program running on virtual
resources to exhibit behavior identical to running on
actual resources, This only includes temporal behavior

to the degree demanded by efficiency,

Language Runtime Virtualization

Language runtimes provide an execution container
including a virtual CPU and memory and also allows
access to the file system and other peripherals, One
of the most widely known such virtual machines is
the JVM, the Java Virtual Machine, The VM executes
Java byte code which is either interpreted or com—
piled just—in~time (JIT). This sandboxes the execution
completely, so the JVM can exercise full resource

control, with JNI as a controlled way out of the sand—

box, However, no byte code instructions can be executed
directly on actual hardware, with the uncommon ex—
ception of Java processors, This gap between byte
code and actual machine instructions enables the por—
tability of binary Java programs, but also violates
Goldberg's efficiency criterion,

Other runtime—level VMs include those of scripting
languages like Python, that ship with library frame—
works and a tightly integrated class hierarchy, A
similar runtime-level VM technology that is decoupled
from a specific development environment is LLVM [16].
This type of VM is typically implemented as a user
mode application with marginal impact on kernel de~-
sign. A notable exception is Singularity {13}, We will
however not pursue this type of virtualization any
further in this paper, They are often limited to execu—
tion of programs written in specific languages —~ the
JVM only executes Java programs — and do not enable

generic legacy support,

APl and ABI Emulation

While only considered virtualization in a wider sense,
it is clearly a related technology, Implementations of
one operating system personality on top of another
is a prominent example, This can be performed on
an API level ag in Cygwin, a UNIX personality for Win—
dows, Because it requires recompilation of applications,
this technique violates Goldberg's equivalence require—
ment, This disadvantage can be mitigated with ABI
level emulation as in Wine, which implements a Win—
dows personality on top of UNIX, However, even ABI
level emulation does not necessarily provide full equi—
valence, because the ABI's functionality is a reimple—
mentation of the original, In the case of the Windows
API, this means aiming at a moving target with a huge
set of functions, some of which are not fully docu—
mented,

Complete resource control by the virtualization layer
is not provided either, because the underlying and
neighboring APIs of the actual environment are still
available, with no controlled way for the virtualiza—
tion layer 1o intercept them, However, other than for
language runtime VMs, the virtualization is Goldberg—
efficient, because all computation is executed on the
actual CPU,
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Operating System Virtualization

The syscall interface of an operating system abs—
tracts from the physical machine, so it can be con—
sidered a virtualization level by itself, Some OSes
multiplex their syscall APl to implement compartments,
These compartments allow multiple, isolated instances
of the user environment for improved security of
services or machine partifioning, Two representatives
in the UNIX world are FreeBSD jails and OpenVZ
for Linux,

OS virtualization is efficient, because similar fo
regular syscalls, most instructions run directly on
the physical CPU, Only the instructions to enter the
kernel have side effects, Isolatioh between different
compartments is guaranteed, This technology is appeal—
ing because it satisfies all three of the Goldberg

criteria,

Paravirtualization

The virtualization layer performing paravirtualization
provides a machine interface, that is abstract, but
very close to real hardware and that can be im-—
plemented efficiently, Paravirtualization is used to run
entire operating systems with their respective user
mode applications inside virtual machines, As the vir—
tual platform is not identical to a physically exist—
ing one, the operating system has fo be ported to the
abstract machine interface, On the one hand, this
violates Goldberg's equivalence requirement, but only
for the architecture—dependent part of the operating
system kernel, The remaining architecture independent
part plus the entire user mode software stack can
then run unmodified,

As the operating system was originally expected to
run in CPU privileged mode, it has to be deprivi—
leged to allow for resource control, This is achieved
by replacing privileged instructions with calls to the
virtualization layer, which can thus exercise control
over the virtual machine, These virtual machines are
also efficient, because all non—privileged operations
run directly on the physical CPU, A representative of
this technology is Xen [3], although current versions
can also run unmodified operating systems by using

full virtualization (see below).

Full Virtualization
Also called faithful virtualization, this technique
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allows running entire operating systems with their
user environment completely unmodified in a virtual
machine which mimics the interface of actual hard-
ware, The operating system and applications within
the virtual machine is called guest. The environment
provided by full virtualization is designed to be in—
distinguishable from real hardware with the exception
of temporal behavior, Communication with code inside
a virtual machine is often implemented by means of
a virtual network card, This strong isclation can be
opened by means of special guest device drivers for
communication purposes,

If the instruction set is not virtualizable, as with
x86, full virtualization can be implemented using
partial binary translation, This is the approach taken
by VMware (2] or QEMU (with KQEMU), Although this
limits the efficiency according to Goldberg, the user
mode code of the guest OS can still run unmodified,
In the latest versions of the x86 instruction set, the
virtualization holes have been closed with the Intel
VT and AMD-V instruction set extensions, So hard—
ware—assisted virtualization without binary translation

is finally possible with x86,

Instruction Set Emulation

Except for language runtime virtualization, all other
types of virtualization reuse the instruction set of
the host CPU and enrich it with virtualization func—
tionality on either the API, ABI syscall or platform
level, However, running a guest with a different in—
struction set immediately prevents direct execution
of instructions on the host CPU, Some form of binary
translation, either interpretation or recompilation, is
required, QFEMU uses this approach to run for example
ARM guests on x86 hosts,

2.2 Virtualization Use Cases

As shown by the diversity of the mentioned flavors,
the term virtualization alone does not adequately de—
scribe a specific technology, However, the wide range
of technologies enables a wide range of solutions, So
it is essential to start with an analysis of the use
cases to understand the problem and then pick the
technology hest suiting the needs, We will now revisit
some of the popular use cases related to virtualiza—

tion and evaluate the choice of solutions,
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Fig. 1 Hosted VMM Architecture

Application Integration

Probably the most common use case for virtualiza-—
tion on the desktop is running an application not
available for your machine's native operating system,
If neither the source code of the application nor a
reliable ABI emulation is available, running the appli—
cation together with the operating system it requires
is a viable option, The application gets the environ—
ment it expects and no code has to be modified,
Several full virtualization products on the market
have successfully developed sophisticated solutions for
this need with a slew of features from GPU accele—
ration to VM snapshots, Implementations use a hosted
VMM running on top of the host operating system
[26] as depicted in Figure 1, This provides users
with the look and feel of a virtual computer within
an application window,

However, when it comes to integrating the guest
and host world, things start to get difficult and the
strict isolation of full virtualization becomes a hin—
drance, Features like VMware's Unity, that display guest
application windows on the host desktop without ren—
dering the guest desktop, are implemented with special
drivers and helper applications in the guest,

Sandboxing

Secure containment of potentially malicious applica—
tions or entire operating systems or running different
versions of the same application without mixing up
configurations is another use case that is often
addressed by full virtualization, However, if there is
no need for a guest OS different from the host OS,
this use case really only requires reliable isolation,
This kind of isolation should be provided by the ope—
rating system, If the contained application should be
able to interact with resources implemented outside
the sandbox, full virtualization provides thick walls

and a more lightweight isolation would be appropriate,

Virtual Machine Virtual Machine

Fig. 2 Hypervisor Architecture

Server Consolidation

Running multiple servers on one physical machine
is motivated by better utilization, Other than on desk—
tops, the typical implementation is not a hosted VMM,
but a native hypervisor, which runs directly on hard-
ware and provides virtual machines as the only ab—
straction, Figure 2 shows the resulting design.

If the consolidated servers all run the same ope-
rating system, the heterogeneity enabled by full vir—
tualization is not required, In shared hosting en—
vironments, where customers buy virtual partitions
of a physical server, the software stack is often homo-—
geneous, Some providers have therefore opted to use
operating system isolation features like BSD jails

instead of full virtualization,

2.3 Decomposing Virtualization

If we are to design a system suitable for the use
cases above, we can deduce three required features:
Isolation is required for sandboxed compartments,
Controlled communication must be provided, Compart—
ments should be able to interact with high bandwidth
and low latency, while a security policy is enforced,
Rehosting is the ability to run an operating system
personality with its user environment on top of a host
platform instead of on bare hardware,

Popular full virtualization implementations couple
isolation and rehosting at the expense of fast commu-—
nication. Looking at the use cases however, we can
see that the sandboxing, consolidation and partition—
ing applications primarily require isolation, This is
why operating system features like BSD jails are
popular in this area, They provide lightweight isolation
directly built into the OS, But because UNIX kernels
like BSD only received such features as an afterthought,
the isolation is not very fine grained and communi-—
cation control is rudimentary, We argue for a system

with isolation as a first class property. Interaction
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between components should be controllable and fast,

Controlled ways to cross the isolation boundary
can be devised, If permitted by system policy, com—
munication primitives of the underlying platform can
be made available to code running inside a virtual
machine, Such code is then called enlightened and
can easily use services implemented outside the virtual
machine, with the system enforcing communication
policies,

Only the desktop, where users want to mix programs
from different operating systems, asks for rehosting,
Of course, rehosting is also required for legacy su—
pport, While not a true use case per se, legacy su-—
pport is important given the large amount of code
available for existing comxhodity operating systems,
We regard rehosting as a valuable bonus on top of
isolation, Thus, we argue for a system design that is
amenable to paravirtualization, so that rehosting can
be implemented on top of it,

Other than full virtualization, which combines
isolation and rehosting, but neglects the communication
aspects, paravirtualization does not hinder communi—
cation, Enlightened guest applications can directly
interact with outside components, By decoupling iso—
lation — implemented by the kernel — and rehosting
— implemented by a paravirtualized guest — we end
up with a layered system design that offers many
unique benefits, We think microkernels, which will
be introduced in the following section, are a natural
candidate to provide this substrate, In Section 4, we
will then show the advantages of microkernel—based,

paravirtualized systems,

3. Microkernels

Commodity desktop systems run large amounts of
code including system services like networking or
file systems, in the CPU's privileged mode, Such a
design is typically called monolithic, Although even
the monolithic kernels of today have evolved to mo-—
dular, flexible designs, the components are only sepa—
rated by convention, not by enforceable boundaries,
One driver bug can crash the entire system, Unlike
user level servers, it is also difficult to replace an
in—kernel component at runtime with an alternative

implementation or even just restart it, once it has
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failed, Kernel modules can help with that, but pro-
vide no enforced isolation,

Microkernels radically reduce the amount of code
running in privileged mode, A microkernel provides
no files, sockets or other higher level abstractions,
The kernel only offers the necessary basis to im-—
plement functionality in user space, The idea of reduc—
tion to fundamental abstractions was already conceived
in 1970 by Per Brinch Hansen [6] and was reformu—
lated as the minimality criterion by Jochen Liedtke
25 years later [19]:

A concept is tolerated inside the microkernel
only if moving it outside the kernel, i.e, per—
mitting competing implementations, would pre—
vent the implementation of the system’s required
functionality,

Thus, a microkernel only provides mechanisms that
cannot be implemented outside the kernel, But other
than exokernels [14], the microkernel is not limited to
secure multiplexing of resources, but actually abstracts
from them, The three basic abstractions provided by
microkernels are:

The Task is a container for resources, most notably
memory pages, Thus, it abstracts from memory and
provides spatial isolation amongst programs,

The Thread is an execution activity, It is an abs-—
traction of the CPU and provides temporal isolation
amongst programs,

Interprocess Communication (IPC) is the mechanism
with which interaction amongst otherwise isolated
programs is enabled,

Monolithic kernels employ a layered system struc—
ture, A file access will be handled by the kernel,
which passes it through the VFS, file system, buffer
cache and disk driver layers. Systems built on top of
a microkernel transform this into a horizontal struc—
ture of cooperating servers, These servers can only

communicate through well—defined interfaces via IPC,

3.1 History of Microkernels

A prominent representative of the first generation
of microkernels is the Mach kernel [1], It was targeted
to be a kernel to replace UNIX, but with the ser—
vices implemented outside the kernel, Mach was a com—

munication kernel, providing ports as the mechanism



to address communication partners, In an effort to
provide a UNIX-like environment, the MkLinux pro-—
ject was started, It set out to port Linux to run as
a paravirtualized single UNIX server on top of Mach,
However, Mach's IPC performance slowed MkLinux
down by about 30% compared to native Linux [11],
This and other Mach experiments led to the belief
that the microkernel system design paradigm of colla—
borating user mode servers was fundamentally flawed,
because the incurred communication overhead between
the distributed components would slow the system
down. To compensate, designers would colocate system
services with the kernel.

This generalization of Mach's results was overcome,
when Jochen Liedtke reexamined the design of the
early generation of microkernels, Trying to prove that
a minimal kernel can still provide a high overall
system performance, he developed first L3, then the
14 kernel [19]. It was optimized for IPC performance [18]
with the first implementation written in assembly code,
Adhering strictly to the microkernel paradigm, only
strictly required mechanisms are allowed in the kernel,
Mach's concepts of message buffering, overwhelming
rights validation and destructively interfering pagers
were droppéd. The only exception to this rule is sche—
duling, which is implemented in the kernel for perfor—
mance reasons, Comparable to MkLinux, Linux was
also ported to run on top of L4, this time with a
mere 2.2% slow down [11]. This L'Linux project will
be described in more detail below,

L4 revived the microkernel idea, which gives us the
opportunity to examine, how microkernels can enable
new system designs that combine isolation, legacy re—
hosting and native microkernel services in an inno-

vative way,

4. 14 as a Hypervisor

14 provides a suitable substrate for a well-structured
user environment based on collaboration of isolated
server components, Moreover, the abstractions it pro—
vides are also lightweight enough to be amenable to
paravirtualization, In this section, we will show, that
existing legacy operating systems can be ported to
the L4 interface, The L4 kernel will then act as a

hypervisor, providing the required isolation, The
paravirtualized OS will provide an operating system
personality for an unmodified user environment to run
on, At the same time, the system is still a micro-
kernel platform, so all microkernel benefits presented
in the previous section can now be combined with para-—
virtualization, This opens up a wealth of new and
interesting system designs, of which we now describe

some representative case studies,

4.1 L*Linux

L'Linux is a paravirtualized version of the Linux
operating system kernel which is adapted to run within
the L4 environment as a normal user mode applica—
tion side by side with other L4 applications instead
of on bare hardware, First results of L'Linux have
been published in 1997 [11] based on Linux 2,0 and
have since been adapted to new Linux versions as
well as new L4 systems, The current version of
L'Linux is based on Linux 26,26,

The adaptations required to run the Linux kernel in
an 14 environment are solely located in the platform—
specific code of Linux, All other code, most notably
all drivers, are left completely unmodified and even
most of the platform specific code is reused, Currently,
L'Linux has been ported to run on the x86-32 and
ARM architectures, We now briefly explain the archi—
tectural parts that required changes,

Startup of L'Linux is much easier than with native
Linux as L'Linux is loaded as a normal application
on L4, It is not required to initialize the hardware, so
most of the 16—bit startup code and BIOS interac—
tion can be skipped,

Low—level memory management has to be adapted as
application programs are not allowed to change page
tables directly, Linux has to make use of the primi-—
tives provided by the 14 microkernel to modify the
virtual address space of its processes, In other words
L'Linux hooks into the page table manipulation func—
tions and indirectly manipulates the real hardware
page tables by calling the appropriate 14 kernel calls,
All of the remaining general memory management in
Linux stays unmodified,

Device handling, specifically the low—level interface
to the hardware, particularly interrupts and 1/O memory,
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has to be modified, For interrupts, an interrupt con-
troller driver is supplied which uses the L4 micro—
kernel way of accessing interrupts via IPC, Due to
the internal structure of interrupts in Linux, we use
separate 14 threads to run the interrupt top halves
in, Interrupts and I/O memory in 14 are accessed
through a device manager that provides clients access
to those resources based on a user—defined policy,
Physical memory needs to be known by its real lo—
cation to device drivers that communicate with their
devices via DMA. The L'Linux kernel does not run
on bare hardware, which means that the addresses it
uses are not the same as the physical addresses, For—
tunately, drivers in Linux use an interface to convert
a virtual to a physical address, which L'Linux can
hook into,

User processes in L'Linux are implemented with L[4
tasks and 14 threads therein, Each Linux process gets
its own address space and is thus isolated from other
Linux processes and L4 programs, L'Linux is binary
compatible fo native Linux which means that it is
able to run any unmodified Linux distribution, including
the X Window System and popular desktop environments
with their applications,

Running Linux on 14 becomes even more inter—
esting when we look at the possibilities of interac—
tion between L'Linux and the surrounding 14 environ—
ment, First to mention are special device drivers that
connect L'Linux to services offered by L4 servers,
Those are needed when a hardware resource should
be shared amongst L'Linux and native 14 applica—
tions, All clients that want to use this resource must
then access it by interfacing with a multiplexing ser—
vice, L'Linux offers so called enlightened drivers for
such resources.

L'Linux can also provide services to the 14 world,
This is very useful, because a Linux system offers a
rich set of features like thousands of drivers for all
sorts of devices, mature and high—performance network
stacks, file systems and a huge amount of available
software, It is tempting to allow L4 applications to
leverage such features, This of course raises security
issues, so the benefits of reusing Linux code and the
security concerns of entrusting such a large code base

with critical data must be carefully balanced,
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Generally, there are two ways of adding services
to L4Linux_ The first is providing a Linux kernel
driver that offers a service, An example might be an
L'Linux that drives a network card and offers a net—
work service to other 14 applications, This requires
knowledge on writing Linux device drivers as well as
a good understanding of L'Linux' internal workings
but might be worthwhile for performance reasons, A
much easier way of offering service is to make use
of normal Linux programs, which can make use of all
the available libraries and tools in the Linux environ-—
ment, As described previously, each Linux process is
running in its own I4 task and thus also on an 14
thread, This means ‘phat a Linux process is an 14
addressable entity and can be made visible to the 14
world, We call such tasks Aybrid L'Linux offers spe—
cial support for such a mode of operation, L'Linux
uses the same scheduling and execution behavior as
native Linux, which means that execution is switch—
ing between the L'Linux kernel server and the cur—
rently active Linux process, The progress of the L'Linux
system also depends on the fact that control is re—
turned to the L'Linux server when an interrupt occurs,
Now, if one Linux user process is enlightened and is
implementing a service, the thread waiting for in—
coming service requests must not be scheduled, Instead
it must stay in its IPC and wait for clients, A
problem arises, when a request arrives, The L'Linux
scheduler needs to schedule the thread again,

To be able to implement this behavior in the L'Linux
system, we added an additional mode for 14 threads
called alien, Alien threads are L4 threads that cannot
invoke system calls directly but instead cause the
microkernel to send an exception message to the ex—
ception handler of the alien thread, Thus, the excep—
tion handler is notified that one of his alien threads
wants to execute an L4 system call. Using a special
reply, the exception handler can approve this 14 sys—
tem call or deny it, Once the 14 system call is finished,
the exception handler receives a completion message,
For both notifications the exception handler is free to
modify the state of the alien thread in any respect,

The described mechanism is also used to implement
the hybrid Linux/L4 programs in L'Linux, All Linux

user processes are alien threads, which means that



any attempt to call 14 system calls will lead to an
exception message to the L'Linux server, It thus knows
that it has to handle a hybrid Linux/L4 program, It
will do so by setting the Linux internal state of the
Linux process to UNINTERREUPTIBLE and allowing it
go on executing the L4 system call, In this state,
the L'Linux kernel never chooses this process for
execution, Execution within L'Linux will continue as
usual with other processes, When the 14 system call
in the hybrid program returns, the L'Linux server will
receive another notification, It then can clear the
UNINTEERUPTIBLE flag and thus let the process re—
turn to normal execution, It will be scheduled accor—
ding to the L'Linux internal scheduler. Using this
approach, it is possible to write hybrid Linux/L4 pro-—
grams to couple the infrastructures of Linux and L4
in order to implement applications that combine the
benefits of both, Several case studies for such applica—

tions will be presented in the following,

4.2 Virtualization and Real-Time

A major challenge in computer systems is the coexi—
stence of real—time and non-real-time applications
on the same machine, A large variety of systems has
to support a diverse set of such use cases: Multi—
media applications have immediate real—time require—
ments, because frames need to be delivered to the
display at fixed time intervals. At the same time,
non-real—time components like media management
or editing components may be running next to the
player core, Another example are mobile phones suppor—
ting a GSM stack with real—time requirements next
to the typical set of calendar and address book applica—
tions, Running such applications on a commodity OS
requires reworking the entire system including all
drivers for real—time capability, which is prohibitively

hard to accomplish,

Legacy World Real-Time World
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: |Real-Time | |Real-Time
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Fig. 3 DROPS Architecture

On a real—time capable microkernel, all applications
are temporally isolated and can execute with real—
time guarantees, This property is not even disrupted
by a paravirtualized legacy OS, because it is just
another user mode application, Our 14 implementation,
Fiasco, provides such real-time guarantees and is
the foundation for the DROPS (Dresden Real—Time
Operating System) architecture depicted in Figure 3,
L'Linux hosts the non-real—time legacy code, while
a media player core and other real—time services
run next to the paravirtualized environment in the
real—time domain, Within this architecture, we also
developed predictable resource managers to provide
real-time guarantees for resources other than the
CPU. Such resources include disk [23], network [20]
and graphics [9].

The DROPS architecture enables real—time applications
on a microkernel with predictable management for a
variety of resources, Paravirtualization is employed to
run the non-real—time part of such applications within

the feature—rich Linux environment,

4.3 Virtualization and Security—Sensitive Applications

Application correctness always relies on lower ar—
chitectural layers like libraries used by the application,
system services providing base resources and the ope—
rating system kernel itself, Some applications may
handle security—sensitive data like cryptographic keys,
logins, passwords or encrypted payload that resides
temporarily unencrypted in memory, If memory con—
tent can potentially be spied upon by a lower level
memory manager, it must be trusted not to do so,
All system components on which the application must
rely not to leak any information or maliciously disrupt
its operation, form the trusted computing base(TCB)
of an application, The operating system architecture

has a strong influence on the size of the TCB, In
Legacy World SecJre World
i Banking GUI

i crypto- || VPN
gFHesystem Gateway

L4 Microkemel 1

Fig. 4 Nizza Architecture
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monolithic systems, a large number of components are
unnecessarily part of the TCB, because millions of
lines of code are running in privileged mode or as
privileged user tasks like the X server, with basi-
cally limitless possibilities to tap into or corrupt appli—
cation data, For example, because the network stack
in a monolithic system runs in privileged mode, it
must be trusted by all applications, even those not
using networking functionality, Ideally, the TCB should
be tailored for each application, including only the
services actually needed, This requires a system with
a minimal kernel and a decomposed user environ-—
ment, consisting of small, deprivileged servers,

In today's world, feature—rich applications seem to
contradict this goal, An everyday example for many
users is online banking in web browsers, where users
enter security—critical data like logins, passwords and
single~use transaction numbers, The browser runs on
top of a large GUI framework and incorporates plugin
code from sources of doubtful trustworthiness., On a
monolithic operating system, it is also relying on
functionally unrelated file system and device driver
code, To reduce the TCB of such an online banking
scenario while preserving the familiar browser user
interface, we introduced the split—applications concept
using paravirtualization [24],

Generally, paravirtualization is used to preserve a
familiar environment, like running an unmodified web
browser., The concept of split applications is used to
separate security—critical parts into a dedicated protec—
tion domain, This security—critical part would not
run in the paravirtualized environment, but directly
on the microkernel and its services, relying only on
code strictly required for the needed functionality,
Between the parts, controlled communication exchanges
data, If the user must be involved in the security—
critical operation, it is necessary to provide a secure
path to the user, otherwise malicious components
can intercept sensitive data, A secure GUI multi—
plexer allows running windows of both the paravir—
tualized part and the security—critical part side by
side, easily and safely distinguishable via unfakeable
decoration, On L4, the Nitpicker secure GUI multi—
plexer [21] runs L'Linux X11 applications alongside L4~
based DOpE [9] GUI applications,
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In the online banking scenario [24], the security—
critical part comprises the SSL management and the
analysis and display of security—related parts of web
pages. SSL management includes certificate validation,
session key handling and payload encryption and
decryption, Pages that require input of sensitive data,
like passwords or transaction numbers, are redirected
to a small 14 DOpE client, All non—critical web pages
are forwarded to the web browser in L'Linux and
displayed by X11,

A generalization of this approach is manifested in
the Nizza architecture [10], which relies on a kerne—
lized TCB and on the reuse of legacy code using
trusted wrappers, The Nizza architecture was leveraged
successfully to reduce the TCB of email signing [25],
a VPN gateway [12], an encrypting file system [27] and
an anonymity service [4], Using the strong isclation
provided by the microkernel to host the security—
critical part separate from the large and untrusted
legacy code allows to reduce the TCB of application
scenarios compared to monolithic solutions by two
orders of magnitude, Virtualization is used to provide
an execution environment to run familiar legacy

applications to minimize the impact on usability,

4.4 Virtualization and Device Drivers

Device drivers are a fundamental part of every ope—
rating system, Given the presence of an ever—growing
number of devices to be supported, rewriting drivers
for new operating systems can be a tedious amount
of work, Fortunately, we can use virtualization to run
device drivers from legacy operating systems within
a microkernel—based system,

Another important fact is that drivers not only make
up more than two thirds of the Linux kernel source
code, but according to a study by Chou et al, [8] sig—
nificantly contribute to the number of bugs in it, A
promising approach to prevent faulty drivers from cor—
rupting the rest of the operating system is to move
them out of the kernel and run them as user—space
applications, The problems arising herewith are similar
to the problems of running paravirtualized OS kernels
on top of a microkernel, Therefore, LeVasseur et al,
[17] propose to use one instance of a paravirtualized

kernel for every device driver and driver—related



subsystem,

A major concern of our work in the area of micro—
kernels has always been to reduce the trusted compui—
ing base needed by the system, Using a whole in—
stance of the Linux kernel to run one device driver
contradicts our concept of a small TCB, Most of the
features needed by Linux device drivers, such as in—
terrupt management, access to 1/O ports and I/O memory,
are already present in our Ld-based system, the only
difference being the interfaces to these services, There—
fore, instead of incorporating a large software layer
reduplicating this functionality, we chose to implement
a library providing glue code to map Linux device
subsystem calls to the services already available on
14, Our glue layer, called Device Driver Environment
(DDE), consists of two parts, The fundamental DDEK:t
provides basic device driver mechanisms, This 1,500~
LoC library is sufficient to construct user-level device
drivers on top of the L4 base services, In addition
{o that, it is possible to construct glue code specific
to legacy operating systems, such as Linux and Free—
BSD. The DDE/Linux 2.6 layer consists of an addi—
tional 2,000LoC and is thus two orders of magni—
tude smaller than a minimally configured instance
of the Linux kernel,

We implemented several user—level device servers
using DDE, which at the moment provide access to
network, hard disk, USB, TPM, and audio devices, De—
vice servers virtualize hardware devices by providing
an abstract hardware interface, This allows for multi—
plexing device resources between many clients, It is
common for several instances of L'Linux to access
the same hardware network interface through the ORe
software network switch, In addition, as a security
feature, the driver servers can be used to enforce
device access policies,

As an example, the ORe software network switch
congists of approximately 92,000LoC, from which
89,000LoC are drivers that have been incorporated
from Linux without any modifications, L'Linux accesses
the device servers using specific device drivers, so—
called stubs, For the ORe network server, the Linux
stub driver consists of 300LoC.

The DDE approach uses a thin API-level emula—

tion layer to enable unmodified reuse of legacy device

drivers in a microkernel—based system, The micro—
kernel approach itself increases system robustness and

fault isolation by moving drivers out of the kernel,

4.5 Symbian on L4

To enable advanced system designs like the case
studies presented above to the embedded world, work
has been undertaken to paravirtualize other operat—
ing systems on L4, In the scope of an embedded
project within Nokia Research Center, Symbian has
been ported to run side by side with L'Linux on
L4/Fiasco [5]. This proves operating system virtuali—
zation to be feasible even in embedded environments
and can be used to bring different operating system
worlds to one device while preserving security and real—

time properties of neighboring software compartments.

5. Outlook and Conclusion

Current and next generation embedded systems pose
new challenges for system designers, Mobile phone
manufacturers consclidate the GSM stack with large
legacy code bases of current embedded operating systems
that can even run third party code, Thus, require—
ments concerning security, real—time and backward
compatibility now appear combined in one handheld
device, The problem gets even harder as the device
is additionally limited by its energy budget,

The platform to build such devices must be able
to run existing code, provide securely isolated com-—
ponents and drive the GSM hardware with real~time
constraints, We believe that the L4 microkernel family
is a suitable substrate to implement systems with
such complex requirements: Paravirfualization can run
the legacy OS with all available software, Next to
it, secure services can be placed and all tasks are
globally scheduled according to a strict real—time
regime, Our Symbian experiment proves the feasibility
of such a system,

In contrast to paravirtualization, commodity virtuali-
zation technologies are an amalgamation of rehosting
and isolation functionality, Popular use cases of vir—
tualization mainly require isolation and thus use
virtualization as a workaround for the lack of isola—
tion in existing operating systems, By using the 14

microkernel, which provides proper isolation and a
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well—structured user environment with fast and con-
trolled component interaction, we believe this deficiency
can be overcome,

Virtualization is beneficial, when existing applica—
tions must run on the microkernel system unmodi—
fied, Porting is prohibitively expensive for large legacy
applications that may only be available in binary
form, However, when virtualization combines isolation
and rehosting, the rehosting functionality is inert,
when only isolation is required, A paravirtualizing
facility on top of the microkernel solves this problem,
Because the L4 API provides low—level abstractions,
porting an existing legacy kernel to it is feasible,
as demonstrated by the L'Linux case study, This
way, rehosting is implemented on top of the 14
microkernel, so it can be used optionally by only
those legacy applications, All benefits of the micro—
kernel are still available next to the paravirtualized
environment,

Using these additional benefits in combination with
paravirtualization allows for unique feature combina-—
tions, We presented examples for joining legacy code
with real—time and strong security properties, Split
applications on a microkernel can reduce the trusted
computing base by two orders of magnitude without
sacrificing functionality, We also demonstrated, how
virtualization techniques help providing device support,

This design flexibility allows custom—tailored sys—
tems with just the right set of features, which is
especially important for battery—limited embedded de—
vices, ARM TrustZone is an emerging technology,
which enables lightweight full virtualization in embedded
systems, Together with ARM multicore ports of L4/
Fiasco [15], microkernels and virtualization technology
partner to enable new application spaces in the em—
bedded domain,
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