Production of Ethanol Directly from Potato Starch by Mixed Culture of Saccharomyces cerevisiae and Aspergillus niger Using Electrochemical Bioreactor

  • Jeon, Bo-Young (Department of Biological Engineering, Seokyeong University) ;
  • Kim, Dae-Hee (Department of Environmental Engineering and Biotechnology, Myongji University) ;
  • Na, Byung-Kwan (Department of Biological Engineering, Seokyeong University) ;
  • Ahn, Dae-Hee (Department of Environmental Engineering and Biotechnology, Myongji University) ;
  • Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
  • Published : 2008.03.31

Abstract

When cultivated aerobically, Aspergillus niger hyphae produced extracellular glucoamylase, which catalyzes the saccharification of unliquified potato starch into glucose, but not when grown under anaerobic conditions. The $K_m\;and\;V_{max}$ of the extracellular glucoamylase were 652.3 mg/l of starch and 253.3 mg/l/min of glucose, respectively. In mixed culture of A. niger and Saccharomyces cerevisiae, oxygen had a negative influence on the alcohol fermentation of yeast, but activated fungal growth. Therefore, oxygen is a critical factor for ethanol production in the mixed culture, and its generation through electrolysis of water in an electrochemical bioreactor needs to be optimized for ethanol production from starch by coculture of fungal hyphae and yeast cells. By applying pulsed electric fields (PEF) into the electrochemical bioreactor, ethanol production from starch improved significantly: Ethanol produced from 50 g/l potato starch by a mixed culture of A. niger and S. cerevisiae was about 5 g/l in a conventional bioreactor, but was 9 g/l in 5 volts of PEF and about 19 g/l in 4 volts of PEF for 5 days.

Keywords

References

  1. Abouzied, M. M. and C. A. Reddy. 1986. Direct fermentation of potato starch to ethanol by cocultures of Aspergillus niger and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 52: 1055-1059
  2. Abouzied, M. M. and C. A. Reddy. 1987. Fermentation of starch to ethanol by a complementary mixture of an amylolytic yeast and Saccharomyces cerevisiae. Biotechnol. Lett. 9: 59-62 https://doi.org/10.1007/BF01043395
  3. Altintas, M. M., K. Ulgen, B. Kirdar, Z. I. Onsan, and S. G. Oliver. 2002. Improvement of ethanol production from starch by recombinant yeast through manipulation of environmental factors. Enzyme Microb. Technol. 31: 640-647 https://doi.org/10.1016/S0141-0229(02)00167-9
  4. Amin, G., R. De Mot, K. Van Kijek, and H. Verachtert. 1985. Direct alcoholic fermentation of starch biomass using amylolytic yeast strains in batch and immobilized cell systems. Appl. Microbiol. Biotechnol. 22: 237-245 https://doi.org/10.1007/BF00252023
  5. Birol, G., Z. I. Onsan, B. Kirdar, and S. G. Oliver. 1998. Ethanol production and fermentation characteristics of recombinant Saccharomyces cerevisiae strains grown on starch. Enzyme Microb. Technol. 22: 1-6
  6. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  7. Chang. R. 1998. Chemistry, pp. 784-791. Sixth Ed. McGraw-Hill.
  8. David, H. G. 1994. Fungal Physiology, pp. 215-244. Second Ed. Wiley-Liss, New York
  9. De Mot, R., K. Van Kijek, A. Donkers, and H. Verachtert. 1985. Potentialities and limitations of direct alcoholic fermentation of starch material with amylolytic yeasts. Appl. Microbiol. Biotechnol. 22: 222-226 https://doi.org/10.1007/BF00253614
  10. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 250-256 https://doi.org/10.1021/ac60110a033
  11. Eksteen, J. M., P. van Rensburg, R. R. Cordero Otero, and I. S. Pretorius. 2003. Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the $\alpha$-amylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol. Bioeng. 84: 639-646 https://doi.org/10.1002/bit.10797
  12. Goffrini, P., I. Ferrero, and C. Donnini. 2002. Resp irationdependent utilization of sugars in yeasts: A determinant role for sugar transporters. J. Bacteriol. 184: 427-432 https://doi.org/10.1128/JB.184.2.427-432.2002
  13. Han, Y. J. and T. S. Yu. 2005. Characterization of two forms of glucoamylase from traditional Korean nuruk fungi, Aspergillus coreanus NR 15-1. J. Microbiol. Biotechnol. 15: 239-246
  14. Kang, H. S., J. K. Lee, M. H. Kim, and D. H. Park. 2006. Effect of electrochemical oxidation potential on biofilter for bacteriological oxidation of VOCs to CO$_2$. J. Microbiol. Biotechnol. 16: 399-408
  15. Kim, K., C. S. Park, and J. R. Mattoon. 1988. High-efficiency, one-step starch utilization by transformed Saccharomyces cell which secrete both yeast glucoamylase and mouse $\alpha$-amylase. Appl. Environ. Microbiol. 54: 966-971
  16. Knox, A. M., J. C. Preez, and S. G. Kilian. 2004. Starch fermentation characteristics of Saccharomyces cerevisiae strains transformed with amylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Enzyme Microb. Technol. 34: 453-460 https://doi.org/10.1016/j.enzmictec.2003.12.010
  17. Kosaric, N., A. Wieczorek, G. P. Cosentino, R. J. Magee, and J. E. Prenosil. 1983. Ethanol Fermentation, pp. 257-285. In H. Dellweg (ed.), Vol. 3. Verlag Chemie, FL
  18. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  19. Laluce, C. and J. R. Mattoon. 1984. Development of rapidly fermenting strains of Saccharomyces diastaticus for direct conversion of starch and dextrins to ethanol. Appl. Environ. Microbiol. 48: 17-25
  20. Ma, Y. J., L. L. Lin, H. R. Chien, and W. H. Hsu. 2000. Efficient utilization of starch by a recombinant strain of Saccharomyces cerevisiae producing glucoamylase and isoamylase. Biotechnol. Appl. Biochem. 31: 55-59 https://doi.org/10.1042/BA19990080
  21. Na, B. K., T. S. Hwang, S. H. Lee, D. H. Ahn, and D. H. Park. 2007. Effect of electrochemical redox reaction on growth and metabolism of Saccharomyces cerevisiae as an environmental factor. J. Microbol. Biotechnol. 17: 445-453
  22. Nakamura, Y., F. Kobayashi, M. Ohnaga, and T. Sawada. 1997. Alcohol fermentation of starch by a genetic recombinant yeast having glucoamylase activity. Biotechnol. Bioeng. 53: 21-25 https://doi.org/10.1002/(SICI)1097-0290(19970105)53:1<21::AID-BIT4>3.0.CO;2-0
  23. Nigam, P. and D. Singh. 1995. Enzyme and microbial systems involved in starch processing. Enzyme Microb. Technol. 17: 770-778 https://doi.org/10.1016/0141-0229(94)00003-A
  24. Oner, E. T., S. G. Oliver, and B. Kurdar. 2005. Production of ethanol from starch by respiration-deficient recombinant Saccharomyces cerevisiae. Appl. Environ. Microbiol. 71: 6443-6445 https://doi.org/10.1128/AEM.71.10.6443-6445.2005
  25. Shin, D., A. Yoo, S. W. Kim, and D. R. Yang. 2006. Cybernetic modeling of simultaneous saccharification and fermentation for ethanol production from steam-exploded wood with Brettanomyces custersii. J. Microbiol. Biotechnol. 16: 135-1461
  26. Urszula, P. and J. Jamroz. 2007. The effect of pulse electric field on accumulation of selenium in cells of Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 17: 1139-1146
  27. Verma, G., P. Nigam, D. Singh, and K. Chaudhary. 2000. Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21. Bioresour. Technol. 72: 261-266 https://doi.org/10.1016/S0960-8524(99)00117-0
  28. Yun, S. H., B. I. Sang, and D. H. Park. 2005. Influence of NaCl on the growth and metabolism of Halomonas salina. J. Microbiol. Biotechnol. 15: 118-124