Carbon and Energy Balances of Glucose Fermentation with Hydrogen-producing Bacterium Citrobacter amalonaticus Y19

  • Oh, You-Kwan (Bioenergy Research Center, Korea Institute of Energy Research) ;
  • Park, Sung-Hoon (Department of Chemical and Biochemical Engineering and Institute for Environmental Technology and Industry, Pusan National University) ;
  • Seol, Eun-Hee (Department of Chemical and Biochemical Engineering and Institute for Environmental Technology and Industry, Pusan National University) ;
  • Kim, Seo-Hyoung (Department of Chemical and Biochemical Engineering and Institute for Environmental Technology and Industry, Pusan National University) ;
  • Kim, Mi-Sun (Bioenergy Research Center, Korea Institute of Energy Research) ;
  • Hwang, Jae-Woong (Oder Management Team, Environmental Management Corp.) ;
  • Ryu, Dewey D.Y. (Biochemical Engineering Program, Department of Chemical Engineering and Material Science, University of California)
  • Published : 2008.03.31

Abstract

For the newly isolated $H_2$-producing chemoheterotrophic bacterium Citrobacter amalonaticus Y19, anaerobic glucose metabolism was studied in batch cultivation at varying initial glucose concentrations (3.5-9.5 g/l). The carbon-mass and energy balances were determined and utilized to analyze the carbon metabolic-pathways network. The analyses revealed (a) variable production of major metabolites ($H_2$, ethanol, acetate, lactate, $CO_2$, and cell mass) depending on initial glucose levels; (b) influence of NADH regeneration on the production of acetate, lactate, and ethanol; and (c) influence of the molar production of ATP on the production of biomass. The results reported in this paper suggest how the carbon metabolic pathway(s) should be designed for optimal Hz production, especially at high glucose concentrations, such as by blocking the carbon flux via lactate dehydrogenase from the pyruvate node.

Keywords

References

  1. Baek, J.-S., E.-H. Choi, Y.-S. Yun, S.-C. Kim, and M.-S. Kim. 2006. Comparison of hydrogenases from Clostridium butyricum and Thiocapsa roseopersicina: Hydrogenases of C. butyricum and T. roseopersicina. J. Microbiol. Biotechnol. 16: 1210-1215
  2. Bisaillon, A., J. Turcot, and P. C. Hallenbeck. 2006. The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. Int. J. Hydrogen Energy 31: 1504-1508 https://doi.org/10.1016/j.ijhydene.2006.06.016
  3. Bock, A. and G. Sawers. 1996. Fermentation, pp. 262-282. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.). Escherichia coli and Salmonella. Cellular and Molecular Biology, 2nd Ed. ASM Press, Washington, DC
  4. Converti, A. and P. Perego. 2002. Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations. Appl. Microbiol. Biotechnol. 59: 303-309 https://doi.org/10.1007/s00253-002-1009-5
  5. Crueger, W., A. Crueger, and A. G. Bayer. 1990. Biotechnology: A Textbook of Industrial Microbiology, 2nd Ed. Sinauer Associates, Inc., Sunderland
  6. Gottschalk, G. 1986. Bacterial Metabolism, 2nd Ed. Springer-Verlag, New York
  7. Gustafsson, L., R. Olz, K. Larsson, C. Larsson, and L. Adler. 1993. Energy balance calculations as a tool to determine maintenance energy requirements under stress conditions. Pure Appl. Chem. 65: 1893-1898 https://doi.org/10.1351/pac199365091893
  8. Islam, R., N. Cicek, R. Sparling, and D. Levin. 2006. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405. Appl. Microbiol. Biotechnol. 72: 576-583 https://doi.org/10.1007/s00253-006-0316-7
  9. Jung, G. Y., J. R. Kim, H. O. Jung, J.-Y. Park, and S. Park. 1999. A new chemoheterotrophic bacterium catalyzing water-gas shift reaction. Biotechnol. Lett. 21: 869-873 https://doi.org/10.1023/A:1005599600510
  10. Jung, G. Y., J. R. Kim, J.-Y. Park, and S. Park. 2002. Hydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int. J. Hydrogen Energy 27: 601-610 https://doi.org/10.1016/S0360-3199(01)00176-8
  11. Kanehisa, M., S. Goto, S. Kawashima, and A. Nakaya. 2002. The KEGG databases at GenomeNet. Nucleic Acids Res. 30: 42-46 https://doi.org/10.1093/nar/30.1.42
  12. Kim, J. R., Y.-K. Oh, Y.-J. Yoon, E. Y. Lee, and S. Park. 2003. Oxygen sensitivity of carbon monoxide-dependent hydrogen production activity in Citrobacter sp. J. Microbiol. Biotechnol. 13: 717-724
  13. Kim, S., E. Seol, S. M. Raj, and S. Park. 2006. Various hydrogenases and formate-dependent hydrogen production in Citrobacter amalonaticus Y19. Proceedings of The 2006 Asian Bio-Hydrogen Symposium. pp. 37-47, November 19. Taichung, Taiwan
  14. Kumar, N. and D. Das. 2000. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem. 35: 589-593 https://doi.org/10.1016/S0032-9592(99)00109-0
  15. Lee, S. G., Y.-J. Kim, S. I. Han, Y.-K. Oh, S. Park, Y. H. Kim, and K. S. Hwang. 2006. Simulation of dynamic behavior of glucose- and tryptophan-grown Escherichia coli using constraintbased metabolic models with a hierarchical regulatory network. J. Microbiol. Biotechnol. 16: 993-998
  16. Magee, R. J. and N. Kosaric. 1987. The microbial production of 2,3-butanediol. Adv. Appl. Microbiol. 32: 89-161 https://doi.org/10.1016/S0065-2164(08)70079-0
  17. Nath, K. and D. Das. 2004. Improvement of fermentative hydrogen production: Various approaches. Appl. Microbiol. Biotechnol. 65: 520-529
  18. van Niel, E. W. J., M. A. W. Budde, G. G. de Haas, F. J. van der Wal, P. A. M. Claassen, and A. J. M. Stams. 2002. Distinctive properties of high hydrogen producing extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int. J. Hydrogen Energy 27: 1391-1398 https://doi.org/10.1016/S0360-3199(02)00115-5
  19. Oh, M.-K., M.-J. Cha, S.-G. Lee, L. Rohlin, and J. C. Liao. 2006. Dynamic gene expression profiling of Escherichia coli in carbon source transition from glucose to acetate. J. Microbiol. Biotechnol. 16: 543-549
  20. Oh, Y.-K., E.-H. Seol, E. Y. Lee, and S. Park. 2002. Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int. J. Hydrogen Energy 27: 1373-1379 https://doi.org/10.1016/S0360-3199(02)00100-3
  21. Oh, Y.-K., M. S. Park, E.-H. Seol, S.-J. Lee, and S. Park. 2003. Isolation of hydrogen-producing bacteria from granular sludge of an upflow anaerobic sludge blanket reactor. Biotechnol. Bioprocess Eng. 8: 54-57 https://doi.org/10.1007/BF02932899
  22. Oh, Y.-K., E.-H. Seol, J. R. Kim, and S. Park. 2003. Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int. J. Hydrogen Energy 28: 1353-1359 https://doi.org/10.1016/S0360-3199(03)00024-7
  23. Oh, Y.-K., S. H. Kim, M.-S. Kim, and S. Park. 2004. Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnol. Bioeng. 88: 690-698 https://doi.org/10.1002/bit.20269
  24. Oh, Y.-K., H.-J. Kim, S. Park, M.-S. Kim, and D. D. Y. Ryu. 2006. Metabolic-flux analysis of hydrogen production pathway in Citrobacter amalonaticus Y19. Proceedings of The 2006 Asian Bio-Hydrogen Symposium. pp. 143-160, November 19. Taichung, Taiwan
  25. Russel, J. B. and G. M. Cook. 1995. Energetics of bacterial growth: Balance of anaerobic and catabolic reactions. Microbiol. Rev. 59: 48-62
  26. Taguchi, F., N. Mizukami, T. Saito-Taki, and K. Hasegawa. 1995. Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain no. 2. Can. J. Microbiol. 41: 536-540 https://doi.org/10.1139/m95-071
  27. Tarmy, E. M. and N. O. Kaplan. 1968. Kinetics of Escherichia coli B D-lactate dehydrogenase and evidence for pyruvate controlled change in conformation. J. Biol. Chem. 243: 2587-2596
  28. Yokoi, H., T. Ohkawara, J. Hirose, S. Hayashi, and Y. Takasaki. 1995. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. J. Ferment. Bioeng. 80: 571-574 https://doi.org/10.1016/0922-338X(96)87733-6