References
- Baek, J.-S., E.-H. Choi, Y.-S. Yun, S.-C. Kim, and M.-S. Kim. 2006. Comparison of hydrogenases from Clostridium butyricum and Thiocapsa roseopersicina: Hydrogenases of C. butyricum and T. roseopersicina. J. Microbiol. Biotechnol. 16: 1210-1215
- Bisaillon, A., J. Turcot, and P. C. Hallenbeck. 2006. The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. Int. J. Hydrogen Energy 31: 1504-1508 https://doi.org/10.1016/j.ijhydene.2006.06.016
- Bock, A. and G. Sawers. 1996. Fermentation, pp. 262-282. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.). Escherichia coli and Salmonella. Cellular and Molecular Biology, 2nd Ed. ASM Press, Washington, DC
- Converti, A. and P. Perego. 2002. Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations. Appl. Microbiol. Biotechnol. 59: 303-309 https://doi.org/10.1007/s00253-002-1009-5
- Crueger, W., A. Crueger, and A. G. Bayer. 1990. Biotechnology: A Textbook of Industrial Microbiology, 2nd Ed. Sinauer Associates, Inc., Sunderland
- Gottschalk, G. 1986. Bacterial Metabolism, 2nd Ed. Springer-Verlag, New York
- Gustafsson, L., R. Olz, K. Larsson, C. Larsson, and L. Adler. 1993. Energy balance calculations as a tool to determine maintenance energy requirements under stress conditions. Pure Appl. Chem. 65: 1893-1898 https://doi.org/10.1351/pac199365091893
- Islam, R., N. Cicek, R. Sparling, and D. Levin. 2006. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405. Appl. Microbiol. Biotechnol. 72: 576-583 https://doi.org/10.1007/s00253-006-0316-7
- Jung, G. Y., J. R. Kim, H. O. Jung, J.-Y. Park, and S. Park. 1999. A new chemoheterotrophic bacterium catalyzing water-gas shift reaction. Biotechnol. Lett. 21: 869-873 https://doi.org/10.1023/A:1005599600510
- Jung, G. Y., J. R. Kim, J.-Y. Park, and S. Park. 2002. Hydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int. J. Hydrogen Energy 27: 601-610 https://doi.org/10.1016/S0360-3199(01)00176-8
- Kanehisa, M., S. Goto, S. Kawashima, and A. Nakaya. 2002. The KEGG databases at GenomeNet. Nucleic Acids Res. 30: 42-46 https://doi.org/10.1093/nar/30.1.42
- Kim, J. R., Y.-K. Oh, Y.-J. Yoon, E. Y. Lee, and S. Park. 2003. Oxygen sensitivity of carbon monoxide-dependent hydrogen production activity in Citrobacter sp. J. Microbiol. Biotechnol. 13: 717-724
- Kim, S., E. Seol, S. M. Raj, and S. Park. 2006. Various hydrogenases and formate-dependent hydrogen production in Citrobacter amalonaticus Y19. Proceedings of The 2006 Asian Bio-Hydrogen Symposium. pp. 37-47, November 19. Taichung, Taiwan
- Kumar, N. and D. Das. 2000. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem. 35: 589-593 https://doi.org/10.1016/S0032-9592(99)00109-0
- Lee, S. G., Y.-J. Kim, S. I. Han, Y.-K. Oh, S. Park, Y. H. Kim, and K. S. Hwang. 2006. Simulation of dynamic behavior of glucose- and tryptophan-grown Escherichia coli using constraintbased metabolic models with a hierarchical regulatory network. J. Microbiol. Biotechnol. 16: 993-998
- Magee, R. J. and N. Kosaric. 1987. The microbial production of 2,3-butanediol. Adv. Appl. Microbiol. 32: 89-161 https://doi.org/10.1016/S0065-2164(08)70079-0
- Nath, K. and D. Das. 2004. Improvement of fermentative hydrogen production: Various approaches. Appl. Microbiol. Biotechnol. 65: 520-529
- van Niel, E. W. J., M. A. W. Budde, G. G. de Haas, F. J. van der Wal, P. A. M. Claassen, and A. J. M. Stams. 2002. Distinctive properties of high hydrogen producing extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int. J. Hydrogen Energy 27: 1391-1398 https://doi.org/10.1016/S0360-3199(02)00115-5
- Oh, M.-K., M.-J. Cha, S.-G. Lee, L. Rohlin, and J. C. Liao. 2006. Dynamic gene expression profiling of Escherichia coli in carbon source transition from glucose to acetate. J. Microbiol. Biotechnol. 16: 543-549
- Oh, Y.-K., E.-H. Seol, E. Y. Lee, and S. Park. 2002. Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int. J. Hydrogen Energy 27: 1373-1379 https://doi.org/10.1016/S0360-3199(02)00100-3
- Oh, Y.-K., M. S. Park, E.-H. Seol, S.-J. Lee, and S. Park. 2003. Isolation of hydrogen-producing bacteria from granular sludge of an upflow anaerobic sludge blanket reactor. Biotechnol. Bioprocess Eng. 8: 54-57 https://doi.org/10.1007/BF02932899
- Oh, Y.-K., E.-H. Seol, J. R. Kim, and S. Park. 2003. Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int. J. Hydrogen Energy 28: 1353-1359 https://doi.org/10.1016/S0360-3199(03)00024-7
- Oh, Y.-K., S. H. Kim, M.-S. Kim, and S. Park. 2004. Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnol. Bioeng. 88: 690-698 https://doi.org/10.1002/bit.20269
- Oh, Y.-K., H.-J. Kim, S. Park, M.-S. Kim, and D. D. Y. Ryu. 2006. Metabolic-flux analysis of hydrogen production pathway in Citrobacter amalonaticus Y19. Proceedings of The 2006 Asian Bio-Hydrogen Symposium. pp. 143-160, November 19. Taichung, Taiwan
- Russel, J. B. and G. M. Cook. 1995. Energetics of bacterial growth: Balance of anaerobic and catabolic reactions. Microbiol. Rev. 59: 48-62
- Taguchi, F., N. Mizukami, T. Saito-Taki, and K. Hasegawa. 1995. Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain no. 2. Can. J. Microbiol. 41: 536-540 https://doi.org/10.1139/m95-071
- Tarmy, E. M. and N. O. Kaplan. 1968. Kinetics of Escherichia coli B D-lactate dehydrogenase and evidence for pyruvate controlled change in conformation. J. Biol. Chem. 243: 2587-2596
- Yokoi, H., T. Ohkawara, J. Hirose, S. Hayashi, and Y. Takasaki. 1995. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. J. Ferment. Bioeng. 80: 571-574 https://doi.org/10.1016/0922-338X(96)87733-6