Selection of Newly Isolated Mushroom Strains for Tolerance and Biosorption of Zinc In Vitro

  • Gonen Tasdemir, F. (Nus Anatolian High School) ;
  • Yamac, M. (Department of Biology, Faculty of Science and Arts, Eskisehir Osmangazi University) ;
  • Cabuk, A. (Department of Biology, Faculty of Science and Arts, Eskisehir Osmangazi University) ;
  • Yildiz, Z. (Department of Statistics, Faculty of Science and Arts, Eskisehir Osmangazi University)
  • Published : 2008.03.31

Abstract

Nine newly isolated mushroom strains were tested to assess both their zinc tolerance and potential for zinc removal from an aqueous solution. Four strains of ectomycorrhizal fungi, namely Clavariadelphus truncatus (T 192), Rhizopogon roseolus (T 21), Lepista nuda (T 373), and Tricholoma equestre (T 174), along with five strains of white rot fungi, Lenzites betulina (S 2), Trametes hirsuta (T 587), Ganoderma spp. (T 99), Polyporus arcularius (T 438), and Ganoderma carnosum (M 88), were investigated using zinc-amended solid and liquid media. Their biosorption properties were also determined. The colony diameter and dry weight were used as tolerance indices for fungal growth. C. truncatus and T. equestre were not strongly inhibited at the highest concentrations of (225 mg/l) zinc in solid media. The most tolerant four strains with solid media, C. truncatus, G carnosum, T. hirsuta, and T. equestre, were then chosen for tolerance tests in liquid media. An ectomycorrhizal strain, C. truncatus, was also detected as the most tolerant strain in liquid media. However, the metal-tolerant strains demonstrated weak activity in the biosorption studies. In contrast, the highest biosorption activity was presented by a more sensitive strain, G. carnosum. In addition, seven different biosorbent types from G. carnosum (M 88) were compared for their Zn (II) biosorption in batch experiments.

Keywords

References

  1. Adriaensen, K., J. Vangronsveld, and J. V. Colpaert. 2006. Zinctolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 16: 553-558 https://doi.org/10.1007/s00572-006-0072-7
  2. Akar, T., A. Cabuk, S. Tunali, and M. Yamac. 2006. Biosorption potential of the macrofungus Ganoderma carnosum for removal of lead (II) ions from aqueous solutions. J. Environ. Sci. Health A 41: 2587-2606 https://doi.org/10.1080/10934520600927989
  3. Baldrian, P. 2003. Interactions of heavy metals with white-rot fungi. Enzyme Microb. Technol. 32: 78-91 https://doi.org/10.1016/S0141-0229(02)00245-4
  4. Baldrian, P. and J. Gabriel. 1997. Effect of heavy metals on the growth of selected wood-rotting Basidiomycetes. Folia Microbiol. 42: 521-523 https://doi.org/10.1007/BF02826566
  5. Barceloux, D. G. 1999. Zinc. J. Toxicol. Clin. Toxicol. 37: 279-292 https://doi.org/10.1081/CLT-100102426
  6. Bellion, M., M. Courbot, C. Jacob, D. Blaudez, and M. Chalot. 2006. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol. Lett. 254: 173-181 https://doi.org/10.1111/j.1574-6968.2005.00044.x
  7. Blaudez, D., C. Jacob, K. Turnau, J. V. Colpaert, U. Ahonen-Jonnarth, R. Finlay, B. Botton, and M. Chalot. 2000. Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycol. Res. 104: 1366-1371 https://doi.org/10.1017/S0953756200003166
  8. Breitenbach, J. and F. Kranzlin. 1991. Fungi of Switzerland, Volume 3. Boletes and Agarics (1st Part). Verlag Mykologia, Lucern
  9. Breitenbach, J. and F. Kranzlin. 1995. Fungi of Switzerland, Volume 4. Agarics (2nd Part). Verlag Mykologia, Lucern
  10. Brown, M. T. and I. R. Hall. 1990. Metal tolerance in fungi, pp. 95-104. In J. Shaw (ed.), Heavy Metal Tolerance in Plants: Evolutionary Aspects. CRC Press, Boca Raton
  11. Brown, M. T. and D. A. Wilkins. 1985. Zinc tolerance of mycorrhizal Betula. New Phytol. 99: 101-106 https://doi.org/10.1111/j.1469-8137.1985.tb03640.x
  12. Bucking, H. and W. Heyser. 1994. The effect of ectomycorrhizal fungi on Zn uptake and distribution in seedlings of Pinus sylvestris L. Plant Soil 167: 203-212 https://doi.org/10.1007/BF00007946
  13. Cho, D. H., M. H. Yoo, and E. Y. Kim. 2004. Biosorption of lead (Pb2+) from aqueous solution by Rhodotorula aurantiaca. J. Microbiol. Biotechnol. 14: 250-255
  14. Cho, J. S., J. S. Hur, B. H. Kang, P. J. Kim, B. K. Sohn, H. J. Lee, Y. K. Jung, and J. S. Heo. 2001. Biosorption of copper by immobilized biomass of Pseudomonas stutzeri. J. Microbiol. Biotechnol. 11: 964-972
  15. Colpaert, J. V. and J. A. van Assche. 1993. The effects of cadmium on ectomycorrhizal Pinus sylvestris L. New Phytol. 123: 325-333 https://doi.org/10.1111/j.1469-8137.1993.tb03742.x
  16. Curdova, E., L. Vavruskova, M. Suchanek, P. Baldrian, and J. Gabriel. 2004. ICP-MS determination of heavy metals in submerged cultures of wood-rotting fungi. Talanta 62: 483-487 https://doi.org/10.1016/j.talanta.2003.08.030
  17. Denny, H. J. and D. A. Wilkins. 1987. Zinc tolerance in Betula spp. III. Variation in response to zinc among ectomycorrhizal associates. New Phytol. 106: 535-544
  18. Denny, H. J. and D. A. Wilkins. 1987. Zinc tolerance in Betula spp. IV. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytol. 106: 545-553
  19. Dixon, R. K. and C. A. Buschena. 1988. Response of ectomycorrhizal Pinus banksiana and Picea glauca to heavy metals in soil. Plant Soil 105: 265-271 https://doi.org/10.1007/BF02376791
  20. Ellis, M. B. and C. P. Ellis. 1990. Fungi Without Gills (Hymenomycetes and Gasteromycetes). Chapman and Hall, London
  21. Gabriel, J., J. Vosahlo, and P. Baldrian. 1996. Biosorption of cadmium to mycelial pellets of wood-rotting fungi. Biotechnol. Tech. 10: 345-348
  22. Gadd, G. M. 1988. Special microbial processes, pp. 301-433. In H. J. Rehm (ed.), Biotechnology. VCH Verlagsgesselschaft, Weinheim
  23. Gadd, G. M. 1990. Heavy metal accumulation by bacteria and other microorganisms. Experientia 46: 834-840 https://doi.org/10.1007/BF01935534
  24. Gadd, G. M. 1992. Biosorption. J. Chem. Tech. Biotechnol. 55: 302-304
  25. Gadd, G. M. 1993. Interactions of fungi with toxic metals. New Phytol. 124: 25-60 https://doi.org/10.1111/j.1469-8137.1993.tb03796.x
  26. Garcia, M. A., J. Alonso, and M. J. Melgar. 2005. Agaricus macrosporus as a potential bioremediation agent for substrates contaminated with heavy metals. J. Chem. Tech. Biotechnol. 80: 325-330 https://doi.org/10.1002/jctb.1203
  27. Gast, C. H., E. Jansen, J. Bierling, and L. Haanstra. 1988. Heavy metals in mushrooms and their relationships with soil characteristics. Chemosphere 17: 789-799 https://doi.org/10.1016/0045-6535(88)90258-5
  28. Hartley, E., J. W. G. Cairney, and A. A. Meharg. 1997. Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189: 303-319 https://doi.org/10.1023/A:1004255006170
  29. Hartley, E., J. W. G. Cairney, F. E. Sanders, and A. A. Meharg 1997. Toxic interactions of metal ions (Cd$^{2+}$, Pb$^{2+}$, Zn$^{2+}$, and Sb$^{3-}$) on in vitro biomass production of ectomycorrhizal fungi. New Phytol. 137: 551-562 https://doi.org/10.1046/j.1469-8137.1997.00835.x
  30. Jentschke, G. and D. L. Godbold. 2000. Metal toxicity and ectomycorrhizas. Physiologica Plant. 109: 107-116 https://doi.org/10.1034/j.1399-3054.2000.100201.x
  31. Jeon, C., J. Y. Park, and Y. J. Yoo. 2001. Biosorption model for binary adsorption sites. J. Microbiol. Biotechnol. 11: 781-787
  32. Jones, M. D. and T. C. Hutchinson. 1986. The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper. New Phytol. 102: 429-442 https://doi.org/10.1111/j.1469-8137.1986.tb00820.x
  33. Kalac, P. and L. Svoboda. 2000. A review of trace element concentrations in edible mushrooms. Food Chem. 69: 273-281 https://doi.org/10.1016/S0308-8146(99)00264-2
  34. Kierstan, M. P. J. and M. P. Coughlan. 1985. Immobilisation of cells and enzymes by gel entrapment, pp. 39-48. In J. Woodward (ed.), Immobilized Cells and Enzymes - A Practical Approach, IRL Press, Oxford
  35. Kim, S. W., H. J. Hwang, J. P. Park, Y. J. Cho, C. H Song, and J. W. Yun. 2002. Mycelial growth and exo-biopolymer production by submerged culture of various edible mushrooms under different media. Lett. Appl. Microbiol. 34: 56-61 https://doi.org/10.1046/j.1472-765x.2002.01041.x
  36. Kratochvil, D. and B. Volesky. 1998. Advances in the biosorption of heavy metals. Trends Biotechnol. 16: 291-300 https://doi.org/10.1016/S0167-7799(98)01218-9
  37. Krupa, P. and J. Kozdroj. 2004. Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industrial desert soil. World J. Microbiol. Biotechnol. 20: 427-430 https://doi.org/10.1023/B:WIBI.0000033067.64061.f3
  38. Lebeau, T., D. Bagot, K. Jézéquel, and B. Fabre. 2002. Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium: Effects of Cd, pH and techniques of culture. Sci. Total Environ. 291: 73-83 https://doi.org/10.1016/S0048-9697(01)01093-2
  39. Leyval, C., K. Turnau, and K. Haselwandter. 1997. Effect on heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza 7: 139-153 https://doi.org/10.1007/s005720050174
  40. Lo, W., H. Chua, K. H. Lam, and S. P. Bi. 1999. A comparative investigation on the biosorption of lead by filamentous fungal biomass. Chemosphere 39: 2723-2736 https://doi.org/10.1016/S0045-6535(99)00206-4
  41. Luef, E., T. Prey, and C. P. Kubicek. 1991. Biosorption of zinc by fungal mycelial wastes. Appl. Microbiol. Biotechnol. 34: 688-692 https://doi.org/10.1007/BF00167924
  42. Mohanty, S. S. and C. R. Chaudhury. 2002. Biosorption of Cu and Zn using Volvariella volvacea. Int. J. Environ. Stud. 59: 503-512 https://doi.org/10.1080/00207230212736
  43. Moser, M. 1983. Keys to Agarics and Boleti. Stuttgart: Gustav, Fischer Verlag, Stuttgart
  44. Muraleedharan, T. R. and C. Venkobachar. 1990. Mechanism of biosorption of copper (II) by Ganoderma lucidum. Biotechnol. Bioeng. 35: 320-325 https://doi.org/10.1002/bit.260350314
  45. Muraleedharan, T. R., L. Iyengar, and C. Venkobachar. 1995. Screening of tropical wood-rotting mushrooms for copper biosorption. Appl. Environ. Microbiol. 61: 3507-3508
  46. Rapp, C. and G. Jentscke. 1994. Acid deposition and ectomycorrhizal symbiosis: Field investigations and causal relationships, pp. 183-230. In D. L. Godbold and A. Huttermann (eds.), Effects of Acid Rain on Forest Processes. Wiley-Liss, New York
  47. Rho, J. Y. and J. H. Kim. 2002. Heavy metal biosorption and its significance to metal tolerance of Streptomycetes. J. Microbiol. 40: 51-54
  48. Sheng, P. X., Y. P. Ting, J. P. Chen, and L. Hong. 2004. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: Characterization of biosorptive capacity and investigation of mechanisms. J. Colloid Interf. Sci. 275: 131-141 https://doi.org/10.1016/j.jcis.2004.01.036
  49. Sing, C. and J. Yu. 1998. Copper adsorption and removal from water by living mycelium of white-rot fungus Phanerochaete chrysosporium. Water Res. 32: 2746-2752 https://doi.org/10.1016/S0043-1354(98)00024-4
  50. Tam, P. C. F. 1995. Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5: 181-187 https://doi.org/10.1007/BF00203335
  51. Vodnik, D., A. R. Byrne, and N. Gogala. 1998. The uptake and transport of lead in some ectomycorrhizal fungi in culture. Mycol. Res. 102: 953-958 https://doi.org/10.1017/S0953756297005959
  52. Volesky, B. 1990. Removal and recovery of heavy metals by biosorption, pp. 7-43, In B. Volesky (ed.), Biosorption of Heavy Metals. CRC Press, Boca Raton
  53. Wang, X. S. and Y. Qin. 2006. Removal of Ni(II), Zn(II), and Cr(VI) from aqueous solution by Alternanthera philoxeroides biomass. J. Hazard. Mater. B138: 582-588
  54. Wilkins, D. A. 1991. The influence of sheathing (ecto-)mycorrhizas on the uptake and toxicity of metals. Agric. Ecosyst. Environ. 35: 245-260 https://doi.org/10.1016/0167-8809(91)90053-Z
  55. Wilkinson, D. M. and N. M. Dickinson. 1995. Metal resistance in trees: The role of mycorrhizae. Oikos 72: 298-300 https://doi.org/10.2307/3546233
  56. Yetis, U., A. Dolek, F. B. Dilek, and G. Ozcengiz. 2000. The removal of Pb(II) by Phanerochaete chrysosporium. Water Res. 34: 4090-4100 https://doi.org/10.1016/S0043-1354(00)00155-X
  57. Zhou J. L. 1999. Zn biosorption by Rhizopus arrhizus and other fungi. Appl. Microbiol. Biotechnol. 51: 686-693 https://doi.org/10.1007/s002530051453