Development of Magnetically Separable Immobilized Lipase by Using Cellulose Derivatives and Their Application in Enantioselective Esterification of Ibuprofen

  • Lee, Go-Woun (Department of Chemical Engineering, Chosun University) ;
  • Joo, Hong-Il (Department of Chemical Engineering, Chosun University) ;
  • Kim, Jung-Bae (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Jung-Heon (Department of Chemical Engineering, Chosun University)
  • Published : 2008.03.31

Abstract

Highly active, stable, and magnetically separable immobilized enzymes were developed using carboxymethyl cellulose (CMC) and diethylaminoethyl cellulose DEAE-C; hereafter designated "DEAE" as supporting materials. Iron oxide nanoparticles penetrated the micropores of the supporting materials, rendering them magnetically separable. Lipase (LP) was immobilized on the surface of the supporting materials by using cross-linked enzyme aggregation (CLEA) by glutaraldehyde. The activity of enzyme aggregates coated on DEAE was approximately 2 times higher than that of enzyme aggregates coated on CMC. This is explained by the fact that enzyme aggregates with amine residues are more efficient than those with carboxyl residues. After a 96-h enantioselective ibuprofen esterification reaction, 6% ibuprofen propyl ester was produced from the racemic mixture of ibuprofen by using DEAE-LP, and 2.8% using CMC-LP.

Keywords

References

  1. Bai, S., Z. Guo, W. Liu, and Y. Sun. 2006. Resolution of ([plusor-minus sign])-menthol by immobilized Candida rugosa lipase on superparamagnetic nanoparticles. Food Chem. 96: 1-7 https://doi.org/10.1016/j.foodchem.2005.01.047
  2. Betancor, L., M. Fuentes, G. Dellamora-Ortiz, F. Lopez-Gallego, A. Hidalgo, N. Alonso-Morales, C. Mateo, J. M. Guisan, and R. Fernandez-Lafuente. 2005. Dextran aldehyde coating of glucose oxidase immobilized on magnetic nanoparticles prevents its inactivation by gas bubbles. J. Molec. Catal. B Enzymatic 32: 97-101 https://doi.org/10.1016/j.molcatb.2004.11.003
  3. Chen, J.-P. and W.-S. Lin. 2003. Sol-gel powders and supported sol-gel polymers for immobilization of lipase in ester synthesis. Enz. Microbial Technol. 32: 801-811 https://doi.org/10.1016/S0141-0229(03)00052-8
  4. Chiang, C.-L. and C.-S. Sung. 2006. Purification of transfectiongrade plasmid DNA from bacterial cells with superparamagnetic nanoparticles. J. Magnetism Magnet. Mater. 302: 7-13 https://doi.org/10.1016/j.jmmm.2005.08.022
  5. Gupta, A. K. and M. Gupta. 2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26: 3995-4021 https://doi.org/10.1016/j.biomaterials.2004.10.012
  6. Hong, J., P.-J. Gong, J.-H. Yu, D.-M. Xu, H.-W. Sun, and S. Yao. 2006. Conjugation of [alpha]-chymotrypsin on a polymeric hydrophilic nanolayer covering magnetic nanoparticles. J. Molec. Catal. B Enzymatic 42: 99-105 https://doi.org/10.1016/j.molcatb.2006.07.008
  7. Hong, J., D. Xu, P. Gong, H. Sun, L. Dong, and S. Yao. 2007. Covalent binding of [alpha]-chymotrypsin on the magnetic nanogels covered by amino groups. J. Molec. Catal. B Enzymatic 45: 84-90 https://doi.org/10.1016/j.molcatb.2006.11.009
  8. Jeong, J., T. H. Ha, and B. H. Chung. 2006. Enhanced reusability of hexa-arginine-tagged esterase immobilized on gold-coated magnetic nanoparticles. Anal. Chim. Acta 569: 203-209 https://doi.org/10.1016/j.aca.2006.03.102
  9. Jia, H., G. Zhu, and P. Wang. 2003. Catalytic behaviors of enzymes attached to nanoparticles: The effect of particle mobility. Biotechnol. Bioeng. 84: 406-414 https://doi.org/10.1002/bit.10781
  10. Jung, S.-K., Y.-R. Chae, J.-M. Yoon, B.-W. Cho, and K.-G. Ryu. 2007. Immobilization of glucose oxidase on multi-wall carbon nanotubes for biofuel cell applications. J. Microbiol. Biotechnol. 17: 1573-1578
  11. Kim, J., H. Jia, C.-W. Lee, S.-W. Chung, J. H. Kwak, Y. Shin, A. Dohnalkova, B.-G. Kim, P. Wang, and J. W. Grate. 2006. Single enzyme nanoparticles in nanoporous silica: A hierarchical approach to enzyme stabilization and immobilization. Enz. Microbial Technol. 39: 474-480 https://doi.org/10.1016/j.enzmictec.2005.11.042
  12. Kim, J., H. Jia, and P. Wang. 2006. Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol. Adv. 24: 296-308 https://doi.org/10.1016/j.biotechadv.2005.11.006
  13. Kim, S. H., S. H. Song, and Y. J. Yoo. 2006. Characteristics of mediated enzymatic nitrate reduction by gallocyanine-bound nanoporous electrode. J. Microbiol. Biotechnol. 16: 505-510
  14. Kohli, P. and C. R. Martin. 2003. Smart nanotubes for biomedical and biotechnological applications. Drug News Perspect. 16: 566-573 https://doi.org/10.1358/dnp.2003.16.9.829338
  15. Ledoux, M. and F. Lamy. 1986. Determination of proteins and sulfobetaine with the folin-phenol reagent. Anal. Biochem. 157: 28-31 https://doi.org/10.1016/0003-2697(86)90191-0
  16. Mao, C.-L., K. D. Zientek, P. T. Colahan, M.-Y. Kuo, C.-H. Liu, K.-M. Lee, and C.-C. Chou. 2006. Development of an enzyme-linked immunosorbent assay for fentanyl and applications of fentanyl antibody-coated nanoparticles for sample preparation. J. Pharmaceut. Biomed. Anal. 41: 1332-1341 https://doi.org/10.1016/j.jpba.2006.03.009
  17. Maria Chong, A. S., X. S. Zhao, A. T. Kustedjo, and S. Z. Qiao. 2004. Functionalization of large-pore mesoporous silicas with organosilanes by direct synthesis. Microporous Mesoporous Mater. 72: 33-42 https://doi.org/10.1016/j.micromeso.2004.04.015
  18. Ozturk, D. C., D. Kazan, and L. Erarslan. 2002. Stabilization and functional properties of Escherichia coli penicillin G acylase by covalent conjugation of anionic polysaccharide carboxymethylcellulose. World J. Microbiol. Biotechnol. 18: 881-888 https://doi.org/10.1023/A:1021262826254
  19. Pimentel, M., A. Le o, E. Melo, W. Ledingham, J. Filho, M. Sivewright, and J. Kennedy. 2007. Immobilization of Candida rugosa lipase on magnetized Dacron: Kinetic study. Artif. Cells Blood Substit. Immobil. Biotechnol. 35: 221-235 https://doi.org/10.1080/10731190601188380
  20. Safarikova, M., I. Roy, M. N. Gupta, and I. Safarik. 2003. Magnetic alginate microparticles for purification of [alpha]-amylases. J. Biotechnol. 105: 255-260 https://doi.org/10.1016/j.jbiotec.2003.07.002
  21. Seo, M. H., J.-H. Lee, M. S. Kim, H. K. Chae, and H. Myung. 2006. Selection and characterization of peptides specifically binding to TiO$_2$ nanoparticles. J. Microbiol. Biotechnol. 16: 303-307
  22. Venkatesan, N., J. Yoshimitsu, Y. Ito, N. Shibata, and K. Takada. 2005. Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials 26: 7154-7163 https://doi.org/10.1016/j.biomaterials.2005.05.012
  23. Wang, C., Y. Zhang, H. S. Seng, and L. L. Ngo. 2006. Nanoparticle-assisted micropatterning of active proteins on solid substrate. Biosens. Bioelectron 21: 1638-1643 https://doi.org/10.1016/j.bios.2005.07.008
  24. Zhu, S., Y. Wu, and Z. Yu. 2005. Immobilization of Candida rugosa lipase on a pH-sensitive support for enantioselective hydrolysis of ketoprofen ester. J. Biotechnol. 116: 397-401 https://doi.org/10.1016/j.jbiotec.2004.12.012