Statistical Optimization of Growth Medium for the Production of the Entomopathogenic and Phytotoxic Cyclic Depsipeptide Beauvericin from Fusarium oxysporum KFCC 11363P

  • Lee, Hee-Seok (Department of Food Science and Technology, BET Research Institute, Chung-Ang University) ;
  • Song, Hyuk-Hwan (Department of Food Science and Technology, BET Research Institute, Chung-Ang University) ;
  • Ahn, Joong-Hoon (Department of Bioscience & Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Shin, Cha-Gyun (Department of Biotechnology, BET Research Institute, Chung-Ang University) ;
  • Lee, Gung-Pyo (Department of Applied Plant Science, Chung-Ang University) ;
  • Lee, Chan (Department of Food Science and Technology, BET Research Institute, Chung-Ang University)
  • Published : 2008.01.31

Abstract

The production of the entomopathogenic and phytotoxic cyclic depsipeptide beauvericin (BEA) was studied in submerged cultures of Fusarium oxysporum KFCC 11363P isolated in Korea. The influences of various factors on mycelia growth and BEA production were examined in both complete and chemically defined culture media. The mycelia growth and BEA production were highest in Fusarium defined medium. The optimal carbon and nitrogen sources for maximizing BEA production were glucose and $NaNO_3$, respectively. The carbon/nitrogen ratio for maximal production of BEA was investigated using response surface methodology (RSM). Equations derived by differentiation of the RSM model revealed that the production of BEA was maximal when using 108 mM glucose and 25 mM $NaNO_3$.

Keywords

References

  1. Audhya, T. K. and D. W. Russell. 1973. Spectrophotometric determination of enniatin A and valinomycin in fungal extracts by ion complexation. Anal. Lett. 6: 265-274 https://doi.org/10.1080/00032717308062205
  2. Audhya, T. K. and D. W. Russell. 1974. Production of enniatins by Fusarium sambucinum: Selection of high-yield conditions from liquid surface cultures. J. Gen. Microbiol. 82: 181-190 https://doi.org/10.1099/00221287-82-1-181
  3. Bernardini, M., A. Carilli, G. Pacioni, and B. Santurbano. 1975. Isolation of beauvericin from Paecilomyces fumosoroseus. Phytochemistry 14: 1865
  4. Calo, L., F. Fornelli, R. Ramires, S. Nenna, A. Tursi, M. F. Caiaffa, and L. Macchia. 2004. Cytotoxic effects of the mycotoxin beauvericin to human cell lines of myeloid origin. Pharmacol. Res. 49: 73-77 https://doi.org/10.1016/j.phrs.2003.07.002
  5. Castella, G., G. P. Munkvold, P. Imerman, and W. G. Hyde. 1999. Effect of temperature, incubation period and substrate on production of fusaproliferin by Fusarium subglutinans ITEM 2404. Nat. Toxins 7: 129-132 https://doi.org/10.1002/(SICI)1522-7189(199907/08)7:4<129::AID-NT53>3.0.CO;2-U
  6. Chauhan, B. and R. Gupta. 2004. Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. PGR-14. Process Biochem. 39: 2115-2122 https://doi.org/10.1016/j.procbio.2003.11.002
  7. Deol, B. S., D. D. Ridley, and P. Singh. 1978. Isolation of cyclodepsipeptides from plant pathogenic fungi. Aust. J. Chem. 31: 1397-1399 https://doi.org/10.1071/CH9781397
  8. Fairlie, D. P., G. Abbenante, and D. R. March. 1995. Macrocyclic peptidomimetics: Forcing peptides into bioactive conformations. Curr. Med. Chem. 2: 654-686
  9. Faulkner, D. J. 1988. Marine natural products. Nat. Prod. Rep. 5: 613-663 https://doi.org/10.1039/np9880500613
  10. Fostso, J., J. F. Leslie, and J. S. Smith. 2002. Production of beauvericin, moniliformin, fusaproliferin, and fumonisins B1, B2, and B3 by fifteen ex-type strains of Fusarium species. Appl. Environ. Microbiol. 68: 5195-5197 https://doi.org/10.1128/AEM.68.10.5195-5197.2002
  11. Fukuda, T., M. Arai, Y. Yamaguchi, R. Masuma, H. Tomoda, and S. Omura. 2004. New beauvericins, potentiators of antifungal miconazole activity, produced by Beauveria sp. FKI- 1366. II. Structure elucidation. J. Antibiot. 57: 117-124 https://doi.org/10.7164/antibiotics.57.117
  12. Fusetani, N., T. Sugawara, S. Matsunaga, and H. Hirota. 1991. Orbiculamide A: A novel cytotoxic cyclic peptide from a marine sponge Theonella sp. J. Am. Chem. Soc. 113: 7811-7812 https://doi.org/10.1021/ja00020a080
  13. Ganassi, S., A. Moretti, A. M. Bonvicini-Pagliai, A. Logrieco, and M. A. Sabatini. 2002. Effects of beauvericin on Schizaphis graminum (Aphididae). J. Invertebr. Pathol. 80: 90-96 https://doi.org/10.1016/S0022-2011(02)00125-8
  14. Grove, J. F. and M. Pople. 1980. The insecticidal activity of beauvericin and the enniatin complex. Mycopathologia 70: 103-105 https://doi.org/10.1007/BF00443075
  15. Gupta, S., B. Krasnoff, N. L. Underwood, J. A. A. Renwick, and D. W. Roberts. 1991. Isolation of beauvericin as an insect toxin from Fusarium semitectum and Fusarium moniliforme var. subglutinans. Mycopathologia 115: 185-189 https://doi.org/10.1007/BF00462223
  16. Hamill, R. L., C. E. Higgens, H. E. Boaz, and M. Gorman. 1969. The structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahedr. Lett. 49: 4255-4258
  17. Jeong, D. H., K. D. Park, S. H. Kim, K. R. Kim, S. W. Choi, J. T. Kim, K. H. Cho, and J. H. Kim. 2004. Identification of Streptomyces sp. Producing antibiotics against phytopathogenic fungi and its structure. J. Microbiol. Biotechnol. 14: 212-215
  18. Lin, Y., J. Wang, X. W. S. Zhou, L. L. P. Vrijmoed, and E. B. G. Jones. 2002. A novel compound enniatin G from the mangrove fungus Halosarpheia sp. from the South China Sea. Aust. J. Chem. 55: 225-227 https://doi.org/10.1071/CH01164
  19. Linko, S. and L. C. Zkong. 1991. Central composite experimental in the optimization of lignin peroxidase production in shake cultures by free and immobilized Phanerochaete chrysosporium. Bioproc. Eng. 6: 43-48 https://doi.org/10.1007/BF00369277
  20. Logrieco, A., A. Rizzo, R. Ferracane, and A. Ritieni. 2002. Occurrence of beauvericin and enniatins in wheat affected by Fusarium avenaceum head blight. Appl. Environ. Microbiol. 68: 82-85 https://doi.org/10.1128/AEM.68.1.82-85.2002
  21. Madry, N., R. Zocher, and H. Kleinkauf. 1983. Enniatin production by Fusarium oxysporum in chemically defined medium. Eur. J. Appl. Microbiol. Biotechnol. 17: 75-79 https://doi.org/10.1007/BF00499854
  22. Martin, J. F. and A. L. Demain. 1980. Control of antibiotic biosynthesis. Microbiol. Rev. 44: 230-251
  23. Minasyan, A. E., D. N. Cherminskii, and I. A. Ellanskaya. 1978. Synthesis of enniatin B by Fusarium sambucinum. Mikrobiologiya 47: 67-71
  24. Moretti, A., A. Logrieco, A. Bottalico, A. Ritieni, G. Randazzo, and P. Corda. 1995. Beauvericin production by Fusarium subglutinans from different geographical areas. Mycol. Res. 99: 282-286 https://doi.org/10.1016/S0953-7562(09)80899-X
  25. Murat, E. 2004. Optimization of medium composition for actinorhodin production by Streptomyces coelicolor A3(2) with response surface methodology. Process Biochem. 39: 1057-1062 https://doi.org/10.1016/S0032-9592(03)00232-2
  26. Nelson, P. E., T. A. Toussoun, and W. F. Marasas. 1983. Fusarium species: An Illustrated Manual for Identification. The Pennsylvannia State University Press
  27. Nilanonta, C., M. Isaka, P. Kittakoop, S. Trakulnaleamsai, M. Tanticharoen, and Y. Thebtaranonth. 2002. Precursor-directed biosynthesis of beauvericin analogs by the insect pathogenic fungus Paecilomyces tenuipes BCC1614. Tetrahedron. 58: 3355-3360 https://doi.org/10.1016/S0040-4020(02)00294-6
  28. Jagannadha Rao, K. and C. H. Kim. 2000. Statistical optimization of medium for the production of recombinant hirudin from Saccharomyces cerevisiae using response surface methodology. Process Biochem. 35: 639-647 https://doi.org/10.1016/S0032-9592(99)00129-6
  29. Rim, S. O., J. H. Lee, W. Y. Choi, S. K. Hwang, S. J. Suh, I. J. Lee, I. K. Rhee, and J. G. Kim. 2005. Fusarium proliferatum KGL0401 as a new gibberellin-producing fungus. J. Microbiol. Biotechnol. 15: 809-814
  30. Sagakuchi, M., A. Moretti, E. Endo, Y. Matsuda, H. Toyoda, and S. Ouchi. 2000. An approach to the use of plant sensitivity for simple detection of mycotoxins. In: Proceedings of the First Asian Conference of Plant Pathology. Kuala Lumpur, Malaysia
  31. Selvaraj, T., C. Padmanabhan, Y. J. Jeong, and H. Kim. 2004. Occurrence of vesicular-arbuscular mycorrhizal (VAM) fungi and their effect on plant growth in endangered vegetations. J. Microbiol. Biotechnol. 14: 885-890
  32. Song, H. H., J. H. Ahn, Y. H Lim, and C. Lee. 2006. Analysis of beauvericin and unusual enniatins co-produced by Fusarium oxysporum FB1501 (KFCC 11363P). J. Microbiol. Biotechnol. 16: 1111-1119
  33. Tomoda, H., H. Nishida, X. X. Huang, R. Masuma, Y. K. Kim, and S. Omura. 1992. New cyclodepsipeptides, enniatins D, E, and F produced by Fusarium sp. FO-1305. J. Antibiot. 45: 1207-1215 https://doi.org/10.7164/antibiotics.45.1207
  34. Vohra, A. and T. Satyanarayana. 2002. Statistical optimization of the medium components by response surface methodology to enhance phytase production by Pichia anomala. Process Biochem. 37: 999-1004 https://doi.org/10.1016/S0032-9592(01)00308-9