Identification of ${\omega}$-Aminotransferase from Caulobacter crescentus and Sitedirected Mutagenesis to Broaden Substrate Specificity

  • Hwang, Bum-Yeol (School of Chemical Engineering, and Institute for Molecular Biology and Genetics, Seoul National University) ;
  • Ko, Seung-Hyun (School of Chemical Engineering, and Institute for Molecular Biology and Genetics, Seoul National University) ;
  • Park, Hyung-Yeon (Division of Chemistry, Inha University) ;
  • Seo, Joo-Hyun (School of Chemical Engineering, and Institute for Molecular Biology and Genetics, Seoul National University) ;
  • Lee, Bon-Su (Division of Chemistry, Inha University) ;
  • Kim, Byung-Gee (School of Chemical Engineering, and Institute for Molecular Biology and Genetics, Seoul National University)
  • 발행 : 2008.01.31

초록

A putative ${\omega}$-aminotransferase gene, cc3143 (aptA), from Caulobacter crescentus was screened by bioinformatical tools and overexpressed in E. coli, and the substrate specificity of the ${\omega}$-aminotransferase was investigated. AptA showed high activity for short-chain ${\beta}$-amino acids. It showed the highest activity for 3-amino-n-butyric acid. It showed higher activity toward aromatic amines than aliphatic amines. The 3D model of the ${\omega}$-aminotransferase was constructed by homology modeling using a dialkylglycine decarboxylase (PDB ID: 1DGE) as a template. Then, the ${\omega}$-aminotransferase was rationally redesigned to increase the activity for 3-amino-3-phenylpropionic acid. The mutants N285A and V227G increased the relative activity for 3-amino-3-phenylpropionic acid to 3-amino-n-butyric acid by 11-fold and 3-fold, respectively, over that of wild type.

키워드

참고문헌

  1. Baker, D. and A. Sali. 2001. Protein structure prediction and structural genomics. Science 294: 93-96 https://doi.org/10.1126/science.1065659
  2. Baxter, S. M. and J. S. Fetrow. 2001. Sequence- and structurebased protein function prediction from genomic information. Curr. Opin. Drug Discov. Devel. 4: 291-295
  3. Capela, D., F. Barloy-Hubler, J. Gouzy, G. Bothe, F. Ampe, J. Batut, P. Boistard, A. Becker, M. Boutry, et al. 2001. Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc. Natl. Acad. Sci. USA 98: 9877-9882
  4. Figeys, D. 2002. Functional proteomics: Mapping proteinprotein interactions and pathways. Curr. Opin. Mol. Ther. 4: 210-215
  5. Harris, A., M. Adler, J. Brink, R. Lin, M. Foehr, M. Ferrer, B. C. Langton-Webster, R. N. Harkins, and S. A. Thompson. 1998. Homologue scanning mutagenesis of heregulin reveals receptor specific binding epitopes. Biochem. Biophys. Res. Commun. 251: 220-224 https://doi.org/10.1006/bbrc.1998.9436
  6. Hwang, B.-Y., B.-K. Cho, H. Yun, K. Koteshwar, and B.-G. Kim. 2005. Revisit of aminotransferase in the genomic era and its application to biocatalysis. J. Mol. Catalysis B Enzym. 37: 47-55 https://doi.org/10.1016/j.molcatb.2005.09.004
  7. Ito, S., A. Ota, K. Yamamoto, and Y. Kawashima. 1992. Resolution of the enantiomers of thiol compounds by reverse-phase liquid chromatography using chiral derivatization with 2,3,4-tetra-O-acetyl-$\beta$-D-glucopyranosyl isothiocyanate. J. Chromatogr. 626: 187-196 https://doi.org/10.1016/0021-9673(92)85409-M
  8. Jansonius, J. N. 1998. Structure, evolution and action of vitamin B6-dependent enzymes. Curr. Opin. Struct. Biol. 8: 759-769 https://doi.org/10.1016/S0959-440X(98)80096-1
  9. Kamphuis, J., E. M. Meijer, W. H. Boesten, T. Sonke, W. J. van den Tweel, and H. E. Schoemaker. 1992. New developments in the synthesis of natural and unnatural amino acids. Ann. N. Y. Acad. Sci. 672: 510-527 https://doi.org/10.1111/j.1749-6632.1992.tb35665.x
  10. Kaneko, T., Y. Nakamura, S. Sato, E. Asamizu, T. Kato, S. Sasamoto, A. Watanabe, K. Idesawa, A. Ishikawa, et al. 2000. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res. 7: 331-338 https://doi.org/10.1093/dnares/7.6.331
  11. Nakamura, Y., T. Kaneko, S. Sato, M. Ikeuchi, H. Katoh, S. Sasamoto, A. Watanabe, M. Iriguchi, K. Kawashima, et al. 2002. Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res. 9: 123-130 https://doi.org/10.1093/dnares/9.4.123
  12. Nierman, W. C., T. V. Feldblyum, M. T. Laub, I. T. Paulsen, K. E. Nelson, J. A. Eisen, J. F. Heidelberg, M. R. Alley, N. Ohta, et al. 2001. Complete genome sequence of Caulobacter crescentus. Proc. Natl. Acad. Sci. USA 98: 4136-4141
  13. Norin, M. and M. Sundstrom. 2002 Structural proteomics: Developments in structure-to-function predictions. Trends Biotechnol. 20: 79-84 https://doi.org/10.1016/S0167-7799(01)01884-4
  14. Onuffer, J. J. and J. F. Kirsch. 1995. Redesign of the substrate specificity of Escherichia coli aspartate aminotransferase to that of Escherichia coli tyrosine aminotransferase by homology modeling and site-directed mutagenesis. Protein Sci. 4: 1750-1757 https://doi.org/10.1002/pro.5560040910
  15. Perl, D., U. Mueller, U. Heinemann, and F. X. Schmid. 2000. Two exposed amino acid residues confer thermostability on a cold shock protein. Nat. Struct. Biol. 7: 380-383 https://doi.org/10.1038/75151
  16. Rotticci, D., J. C. Rotticci-Mulder, S. Denman, T. Norin, and K. Hult. 2001. Improved enantioselectivity of a lipase by rational protein engineering. Chembiochem 2: 766-770 https://doi.org/10.1002/1439-7633(20011001)2:10<766::AID-CBIC766>3.0.CO;2-K
  17. Sacchi, S., S. Lorenzi, G. Molla, M. S. Pilone, C. Rossetti, and L. Pollegioni. 2002. Engineering the substrate specificity of Damino- acid oxidase. J. Biol. Chem. 277: 27510-27516 https://doi.org/10.1074/jbc.M203946200
  18. Salanoubat, M., S. Genin, F. Artiguenave, J. Gouzy, S. Mangenot, M. Arlat, A. Billault, P. Brottier, J. C. Camus, et al. 2002. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415: 497-502 https://doi.org/10.1038/415497a
  19. Shin, J.-S. and B.-G. Kim. 2001. Comparison of the $\omega$- transaminases from different microorganisms and application to production of chiral amines. Biosci. Biotechnol. Biochem. 65: 1782-1788 https://doi.org/10.1271/bbb.65.1782
  20. Shin, J.-S., H. Yun, J.-W. Jang, I. Park, and B.-G. Kim. 2003. Purification, characterization, and molecular cloning of a novel amine:pyruvate transaminase from Vibrio fluvialis JS17. Appl. Microbiol. Biotechnol. 61: 463-471 https://doi.org/10.1007/s00253-003-1250-6
  21. Sonnhammer, E. L., S. R. Eddy, and R. Durbin 1997. Pfam: A comprehensive database of protein domain families based on seed alignments. Proteins 28: 405-420 https://doi.org/10.1002/(SICI)1097-0134(199707)28:3<405::AID-PROT10>3.0.CO;2-L
  22. Taylor, P. P., D. P. Pantaleone, R. F. Senkpeil, and I. G. Fotheringham. 1998. Novel biosynthetic approaches to the production of unnatural amino acids using transaminases. Trends Biotechnol. 16: 412-418 https://doi.org/10.1016/S0167-7799(98)01240-2
  23. Woodyer, R., W. A. van der Donk, and H. Zhao. 2003. Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design. Biochemistry 42: 11604-11614 https://doi.org/10.1021/bi035018b
  24. Yun, H., S. Lim, B.-K. Cho, and B.-G. Kim. 2004. $\omega$-Amino acid:pyruvate transaminase from Alcaligenes denitrificans Y2k- 2: A new catalyst for kinetic resolution of $\beta$-amino acids and amines. Appl. Environ. Microbiol. 70: 2529-2534 https://doi.org/10.1128/AEM.70.4.2529-2534.2004
  25. Zhang, C. and S.-H. Kim. 2003. Overview of structural genomics: From structure to function. Curr. Opin. Chem. Biol. 7: 28-32 https://doi.org/10.1016/S1367-5931(02)00015-7
  26. Zhu, H., M. Bilgin, and M. Snyder. 2003. Proteomics. Annu. Rev. Biochem. 72: 783-812 https://doi.org/10.1146/annurev.biochem.72.121801.161511