Regulation of $Ca_v3.2Ca^{2+}$ Channel Activity by Protein Tyrosine Phosphorylation

  • Published : 2008.02.29

Abstract

Calcium entry through $Ca_v3.2Ca^{2+}$ channels plays essential roles for various physiological events including thalamic oscillation, muscle contraction, hormone secretion, and sperm acrosomal reaction. In this study, we examined how protein tyrosine phosphatases or protein tyrosine kinases affect $Ca_v3.2Ca^{2+}$ channels reconstituted in Xenopus oocytes. We found that $Ca_v3.2$ channel activity was reduced by 25% in response to phenylarsine oxide (tyrosine phosphatase inhibitor), whereas it was augmented by 19% in response to Tyr A47 or herbimycin A (tyrosine kinase inhibitors). However, other biophysical properties of $Ca_v3.2$ currents were not significantly changed by the drugs. These results imply that $Ca_v3.2$ channel activity is capable of being increased by activation of tyrosine phosphatases, but is decreased by activation of tyrosine kinases.

Keywords

References

  1. Ahem, C. A., J. F. Zhang, M. J. Wookalis, and R. Horn. 2005. Modulation of the cardiac sodium channel $Na_{v}1.5$ by Fyn, a Src family tyrosine kinase. Circ. Res. 96: 991-998 https://doi.org/10.1161/01.RES.0000166324.00524.dd
  2. Bae, M. A., D. Y. Jun, K. M. Kim, S. K. Kim, J. S. Chun, D. Taub, W. Park, B. J. Moon, and Y. H. Kim. 2005. Protein tyrosine kinase, $p56^{lck}$ and $p59^{fyn}$, and MAP kinase JNK1 provide an early signal required for upregulation of Fas ligand expression in aburatubolactam C-induced apoptosis of human Jurkat T cells. J. Microbiol. Biotechnol. 15: 756-766
  3. Belevych, A. E., S. Warrier, and R. D. Harvey. 2002. Genistein inhibits cardiac L-type $Ca^{2+}$ channel activity by a tyrosine kinase-independent mechanism. Mol. Pharmacol. 62: 554-565 https://doi.org/10.1124/mol.62.3.554
  4. Bootman, M. D., T. J. Collins, C. M. Peppiatt, L. S. Prothero, L. MacKenzie, P. De Smet, M. Travers, S. C. Tovey, J. T. Seo, M. J. Berridge, F. Ciccolini, and P. Lipp. 2001. Calcium signaling - an overview. Semin. Cell Dev. Biol. 12: 3-10 https://doi.org/10.1006/scdb.2000.0211
  5. Christophe, A., R. L. Jose, and M. F. Harvey. 1997. Voltagedependent modulation of T-type calcium channels by protein tyrosine phosphorylation. EMBO J. 16: 1593-1599 https://doi.org/10.1093/emboj/16.7.1593
  6. Cribbs, L. L., J. H. Lee, J. Yang, J. Satin, Y. Zhang, A. Daud, J. Barclay, M. P. Williamson, M. Fox, M. Rees, and E. Perez- Reyes. 1998. Cloning and characterization of $\alpha 1H$ from human heart, a member of the T-type calcium channel gene family. Circ. Res. 83: 103-109 https://doi.org/10.1161/01.RES.83.1.103
  7. Hitoshi, M., F. Kazuhiko, M. Hiroyuki, S. Takehiro, K. Shigehisa, and M. Kenjiro. 1998. Tyrosine kinase inhibitors suppress N-type and T-type $Ca^{2+}$ channel currents in NG108-15 cells. Eur. J. Physiol. 436: 127-132 https://doi.org/10.1007/s004240050613
  8. Hsueh, R. C. and R. H. Scheuermann. 2000. Tyrosine kinase activation in the decision between growth, differentiation, and death responses initiated from the B cell antigen receptor. Adv. Immunol. 75: 283-316 https://doi.org/10.1016/S0065-2776(00)75007-3
  9. Kho, K. H., M. Morisawa, and K. S. Choi. 2004. Role of $Ca^{2+}$ and calmodulin on the initiation of sperm motility in salmonid fishes. J. Microbiol. Biotechnol. 14: 456-465
  10. Kho, K. H., M. Morisawa, and K. S. Choi. 2005. Cell signaling mechanisms of sperm motility in aquatic species. J. Microbiol. Biotechnol. 15: 665-671
  11. Kurejova, M. and L. Lacinova. 2005. Effect of protein tyrosine kinase inhibitors on the current through the $Ca_{v}3.1$ channel. Arch. Biochem. Biophys. 466: 20-27
  12. Lee, J. H., A. N. Daud, L. L. Cribbs, A. E. Lacerda, A. Pereverzev, U. Klockner, T. Schneider, and E. Perez-Reyes. 1999. Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J. Neurosci. 19: 1912-1921 https://doi.org/10.1523/JNEUROSCI.19-06-01912.1999
  13. Lee, J. H. and P. H. Dong. 2001. Expression of low voltageactivated $Ca^{2+}$ channels in Xenopus oocytes. J. Microbiol. Biotechnol. 11: 614-618
  14. Miljen, M., S. Pathirathna, M. T. Nelson, S. Mancuso, P. M. Joksovic, E. R. Rosenberg, D. A. Bayliss, V. J. Todorovic, and S. M. Todorovic. 2007. Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J. Neurosci. 27: 3305-3316 https://doi.org/10.1523/JNEUROSCI.4866-06.2007
  15. Nesti, E., B. Everill, and A. D. Moirelli. 2004. Endocytosis as a mechanism for tyrosine kinase-dependent suppression of a voltage-gated potassium channel. Mol. Biol. Cell 15: 4073-4088 https://doi.org/10.1091/mbc.E03-11-0788
  16. Park, J. Y., H. J. Ahn, J. G. Gu, K. H. Lee, J. S. Kim, H. W. Kang, and J. H. Lee. 2003. Molecular identification of $Ca^{2+}$ channels in human sperm. Exp. Mol. Med. 35: 285-292 https://doi.org/10.1038/emm.2003.39
  17. Peloquin, J. B., H. Khosravani, W. Barr, C. Bladen, R. Evans, J. Mezeyova, D. Parker, T. P. Snutch, J. E. McRory, and G. W. Zamponi. 2006. Functional analysis of $Ca_{v}3.2$ T-type calcium channel mutations linked to childhood absence epilepsy. Epilepsia 47: 655-658 https://doi.org/10.1111/j.1528-1167.2006.00482.x
  18. Perez-Reyes, E. 2003. Molecular physiology of low-voltageactivated T-type calcium channels. Physiol. Rev. 83: 117-161 https://doi.org/10.1152/physrev.00018.2002
  19. Son, W. Y., J. H. Lee, J. H. Lee, and C. T. Han. 2000. Acrosome reaction of human spermatozoa is mainly mediated by $\alpha_{1H}$ T-type calcium channels. Mol. Hum. Reprod. 6: 893-897 https://doi.org/10.1093/molehr/6.10.893
  20. Splawski, I., D. S. Yoo, S. C. Stotz, A. Cherry, D. E. Clapham, and M. T. Keating. 2006. CACNA1H mutations in autism spectrum disorders. J. Biol. Chem. 281: 22085-22091 https://doi.org/10.1074/jbc.M603316200
  21. Stamboulian, S., D. Kim, H. S. Shin, M. Ronjat, M. D. Waard, and C. Arnoult. 2004. Biophysical and pharmacological characterization of spermatogenic T-type calcium current in mice lacking the $Ca_{v}3.1$ (alpha1G) calcium channel: $Ca_{v}3.2$ (alpha1H) is the main functional calcium channel in wild-type spermatogenic cells. J. Cell. Physiol. 200: 116-124 https://doi.org/10.1002/jcp.10480
  22. Takebayashi, S., Y. Li, T. Kaku, S. Inagaki, Y. Hashimoto, K. Kimura, S. Miyamoto, T. Hadama, and K. Ono. 2006. Remodeling excitation-contraction coupling of hypertrophied ventricular myocytes is dependent on T-type calcium channels expression. Biochem. Biophys. Res. Commun. 345: 766-773 https://doi.org/10.1016/j.bbrc.2006.04.146
  23. Uckum, F. M. 1998. Bruton's tyrosine kinase (BTK) as a dualfunction regulator of apoptosis. Biochem. Pharmacol. 56: 683-691 https://doi.org/10.1016/S0006-2952(98)00122-1
  24. Wijetunge, S., J. S. Lymn, and A. D. Hughes. 2000. Effects of protein tyrosine kinase inhibitors on voltage-operated calcium channel currents in vascular smooth muscle cells and pp60(csrc) kinase activity. Br. J. Pharmacol. 129: 1347-1354 https://doi.org/10.1038/sj.bjp.0703186