Screening of Lactobacilli Derived from Chicken Feces and Partial Characterization of Lactobacillus acidophilus A12 as Animal Probiotics

  • Lee, Na-Kyoung (Division of Animal Life Science, Konkuk University) ;
  • Yun, Cheol-Won (School of Life Science and Biotechnology, Korea University) ;
  • Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University) ;
  • Chang, Hyo-Ihl (School of Life Science and Biotechnology, Korea University) ;
  • Kang, Chang-Won (Division of Animal Life Science, Konkuk University) ;
  • Paik, Hyun-Dong (Division of Animal Life Science, Konkuk University)
  • Published : 2008.02.29

Abstract

This study was performed to screen and select Lactobacillus strains from chicken feces for probiotic use in animals. Of these strains, strain AU had the highest immunostimulatory effect. Therefore, strain A12 was characterized as a potential probiotic. Strain A12 was tentatively identified as Lactobacillus acidophilus A12, using the API 50 CHL kit based on a 99.9% homology. L. acidophilus A12 was highly resistant to artificial gastric juice (pH 2.5) and bile acid (oxgall). Based on results from the API ZYM kit, leucine arylamidase, crystine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase, ${\alpha}$-galactosidase, ${\beta}$-galactosidase, ${\alpha}$-glucosidase, ${\beta}$-glucosidase, and N-acetyl-${\beta}$-glucosamidase were produced by strain A12. L. acidophilus A12 showed resistance to several antibiotics (nisin, gentamicin, and erythromycin). The amount of interleukin $(IL)-1{\alpha}$ in $20{\times}$ concentrated supernatant from L. acidophilus A12 was approximately 156pg/ml. With regard to antioxidant activity, L. acidophilus A12 supernatant showed 60.6% DPPH radical scavenging activity. These results demonstrate the potential use of L. acidophilus A12 as health-promoting probiotics.

Keywords

References

  1. Abe, F., N. Ishibashi, and S. Shimamura. 1995. Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J. Dairy Sci. 78: 2838-2846 https://doi.org/10.3168/jds.S0022-0302(95)76914-4
  2. Amanatidou, A., E. J. Smid, M. H. J. Bennik, and L. G. M. Gorris. 2001. Antioxidative properties of Lactobacillus sake upon exposure to elevated oxygen concentration. FEMS Microbiol. Lett. 203: 87-94 https://doi.org/10.1111/j.1574-6968.2001.tb10825.x
  3. Benno, Y. and T. Mitsuoka. 1992. Impact of Bifidobacterium longum on human fecal microflora. Microbiol. Immunol. 36: 683-694 https://doi.org/10.1111/j.1348-0421.1992.tb02071.x
  4. Caglar, E., B. Kargul, and I. Tanboga. 2005. Bacteriotherapy and probiotic's role on oral health. Oral Dis. 11: 131-137 https://doi.org/10.1111/j.1601-0825.2005.01109.x
  5. Chung, Y. C., C. T. Chang, W. W. Chao, C. F. Lin, and S. T. Chou. 2002. Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J. Agric. Food Chem. 50: 2454-2458 https://doi.org/10.1021/jf011369q
  6. Clancy, R. 2003. Immunobiotics and the probiotic evolution. FEMS Immunol. Med. Microbiol. 38: 9-12 https://doi.org/10.1016/S0928-8244(03)00147-0
  7. Cole, C. B., R. Fuller, and S. M. Carter. 1989. Effect of probiotic supplements of Lactobacillus acidophilus and Bifidobacterium adolescentis 2204 on $\beta-glucosidase$ and $\beta-glucuronidase$ activity in the lower gut of rats associated with a human fecal flora. Microb. Ecol. Health D. 2: 223-225 https://doi.org/10.3109/08910608909140223
  8. Do, J. R., S. N. Kang, K. J. Kim, and S. W. Lee. 2004. Antimicrobial and antioxidant activities and phenolic contents in the water extract of medicinal plants. Food Sci. Biotechnol. 13: 640-645
  9. Fernandez, M. F., S. Boris, and C. Barbes. 2003. Probiotic properties of human Lactobacilli strains to be used in the gastrointestinal tract. J. Appl. Microbiol. 94: 449-455 https://doi.org/10.1046/j.1365-2672.2003.01850.x
  10. Fernandez, M. F., S. Boris, and C. Barbes. 2005. Safety evaluation of Lactobacillus delbrueckii subsp. lactis UO 004, a probiotic bacterium. Res. Microbiol. 156: 154-160 https://doi.org/10.1016/j.resmic.2004.09.006
  11. Fuller, R. 1989. Probiotics in human and animals. J. Appl. Bacteriol. 66: 365-378 https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  12. Ha, C.-G., J.-K. Cho, C.-H. Lee, Y.-G. Chai, Y.-A. Ha, and S.-H. Shin. 2006. Cholesterol lowering effects of Lactobacillus plantarum isolated from human feces. J. Microbiol. Biotechnol. 16: 1201-1209
  13. Hutkins, R. W. and N. L. Nannen. 1993. pH homeostasis in lactic acid bacteria. J. Dairy Sci. 76: 2354-2365 https://doi.org/10.3168/jds.S0022-0302(93)77573-6
  14. Isolauri, E., T. Arvola, Y. Sutas, E. Moilanen, and S. Salminen. 2000. Probiotics in the management of atopic eczema. Clin. Exp. Allergy 30: 1604-1610
  15. Kim, J. A., J. M. Lee, D. B. Shin, and N. H. Lee. 2004. The antioxidant activity and tyrosinate inhibitory activity of phloro-tannins in Ecklonia cava. Food Sci. Biotechnol. 13: 476-480
  16. Kim, T.-H., N.-K. Lee, K.-H. Chang, E. Park, S.-Y. Choi, and H.-D. Paik. 2006. Antioxidant activity of partially purified extracts isolated from Bacillus polyfermenticus SCD culture. Food Sci. Biotechnol. 15: 482-484
  17. Klaenhammer, T. R. 1988. Bacteriocins of lactic acid bacteria. Biochimie 70: 337-349 https://doi.org/10.1016/0300-9084(88)90206-4
  18. Kobayashi, Y., K. Tohyama, and T. Terashima. 1974. Tolerance of the multiple antibiotic resistant strains, L. casei PSR 3002, to artificial digestive fluids. Jpn. J. Microbiol. 29: 691-697
  19. Kong, W. S., S. H. Kim, J. S. Park, S. J. Hahn, and I. M. Chung. 2004. Evaluation and selection of antioxidative activities of 80 collected and mated mushroom strains. Food Sci. Biotechnol. 13: 689-693
  20. Kos, B., J. OEuoekoviæ, J. Goreta, and S. Matooeiæ. 2000. Effect of protectors on the viability of Lactobacillus acidophilus M92 in simulated gastrointestinal conditions. Food Technol. Biotechnol. 38: 121-128
  21. Kullisaar, T., M. Zilmer, M. Mikelsaar, T. Vihalemm, H. Annuk, C. Kairane, and A. Kilk. 2002. Two antioxidative lactobacilli strains as promising probiotics. Int. J. Food Microbiol. 72: 215-224 https://doi.org/10.1016/S0168-1605(01)00674-2
  22. Lee, H. M. and Y. Lee. 2006. Isolation of Lactobacillus plantarum from kimchi and its inhibitory activity on the adherence and growth of Helicobacter pylori. J. Microbiol. Biotechnol. 16: 1513-1517
  23. Lee, J. K., W. T. Kim, J. H. Lee, J. H. Yum, and W. C. Shin. 1991. Isolation and identification of lactic acid bacteria for preparation of probiotics. Kor. J. Appl. Microbiol. Biotechnol. 19: 429-432
  24. O'Sullivan, G. C. 2001. Probiotics. Br. J. Surg. 88: 161-162 https://doi.org/10.1046/j.1365-2168.2001.01656.x
  25. Park, J.-H., Y. Lee, E. Moon, S.-H. Seok, M.-W. Baek, H.-Y. Lee, D.-J. Kim, C.-H. Kim, and J.-H. Park. 2005. Safety assessment of Lactobacillus fermentum PL9005, a potential probiotic lactic acid bacterium, in mice. J. Microbiol. Biotechnol. 15: 603-608
  26. Park, Y. H., J. G. Kim, Y. W. Shin, and S. H. Kim. 2007. Effects of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats. J. Microbiol. Biotechnol. 17: 655-662
  27. Pascual, M., M. Hugas, J. I. Badiola, J. M. Monfort, and M. Garriga. 1999. Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization in chickens. Appl. Environ. Microbiol. 65: 4981-4986
  28. Shin, M.-S., Y.-J. Kim, H.-S. Bae, and Y.-J. Baek. 1996. Effects of the lactic acid bacteria administration on fecal microflora and putrefactive metabolites in healthy adults. Kor. J. Microbiol. Biotechnol. 24: 254-260
  29. Shin, M.-S., H.-M. Kim, G.-T. Kim, C.-S. Huh, H.-S. Bae, and Y.-J. Baek. 1999. Selection and characteristics of Lactobacillus acidophilus strain from Korean feces. Kor. J. Food Sci. Technol. 31: 495-501
  30. Shon, M. Y., S. D. Choi, G. G. Kahng, S. H. Nam, and N. J. Sung. 2004. Antimutagenic, antioxidant and free radical scavenging activity of ethyl acetate extracts from white, yellow and red onions. Food Chem. Toxicol. 42: 659-666 https://doi.org/10.1016/j.fct.2003.12.002
  31. Sullivan, $\AA$. and C. E. Nord. 2005. Probiotics and gastrointestinal disease. J. Intern. Med. 257: 78-92 https://doi.org/10.1111/j.1365-2796.2004.01410.x
  32. Temmerman, R., B. Pot, G. Huys, and J. Swings. 2003. Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int. J. Food Microbiol. 81: 1-10 https://doi.org/10.1016/S0168-1605(02)00162-9
  33. Tsaliki, E., V. Lagouri, and G. Doxastakis. 1999. Evaluation of the antioxidant activity of lupin seed flour and derivatives (Lupins albus ssp. Graecus). Food Chem. 65: 71-75 https://doi.org/10.1016/S0308-8146(98)00172-1
  34. Valraedas, M. M. C., H. C. van der Mei, G. Reid, and J. H. Busscher. 1996. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolated. Appl. Environ. Microbiol. 62: 1958-1963
  35. Vinderola, C. G. and J. A. Reinheimer. 2003. Lactic acid starter and probiotic bacteria: A comparative 'in vitro' study of probiotic characteristics and biological barrier resistance. Food Res. Int. 36: 895-904 https://doi.org/10.1016/S0963-9969(03)00098-X
  36. Xanthopoulos, V., E. Litopoulou-Tzanetaki, and N. Tzanetakis. 2000. Characterization of Lactobacillus strains from infant faeces as dietary adjuncts. Food Microbiol. 17: 205-215 https://doi.org/10.1006/fmic.1999.0300
  37. Zhou, J. S., C. J. Pillidge, P. K. Gopal, and H. S. Gill. 2005. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int. J. Food Microbiol. 8: 211-217