Paenibacillus donghaensis sp. nov., a Xylan-degrading and Nitrogen-fixing Bacterium Isolated from East Sea Sediment

  • Choi, Jeong-Hwa (Department of Microbiology and Biotechnology Research Institute, Chungbuk National University) ;
  • Im, Wan-Taek (Department of Biological Sciences, Korea Advanced Institute of Science and technology) ;
  • Yoo, Jae-Soo (Department of School of Electrical and Computer Engineering, Chungbuk National University) ;
  • Lee, Sang-Mahn (Department of Life Science, Chongju University) ;
  • Moon, Deok-Soo (Deep Ocean Water Application Research Center, Korea Ocean research and Development Institute) ;
  • Kim, Hyeon-Ju (Deep Ocean Water Application Research Center, Korea Ocean research and Development Institute) ;
  • Rhee, Sung-Keun (Department of Microbiology and Biotechnology Research Institute, Chungbuk National University) ;
  • Roh, Dong-Hyun (Department of Microbiology and Biotechnology Research Institute, Chungbuk National University)
  • Published : 2008.02.29

Abstract

A Gram-positive and endospore-forming strain, $JH8^T$, was isolated from deep-sea sediment and identified as a member of the genus Paenibacillus on the basis of 16S rRNA gene sequence and phenotypic analyses. According to a phylogenetic analysis, the most closely related species was Paenibacillus wynnii LMG $22176^T$ (96.9%). Strain $JH8^T$ was also facultatively anaerobic and grew optimally at $20-25^{\circ}C$. The major cellular fatty acid was anteiso-$C_{15:0}$, and the DNA G+C content was 53.1mol%. The DNA-DNA relatedness between the isolate and Paenibacillus wynnii LMG $22176^T$ was 7.6%, indicating that strain $JH8^T$ and P. wynnii belong to different species. Based on the phylogenetic, phenotypic, and chemotaxonomic characteristics, strain $JH8^T$ would appear to belong to a novel species, for which the name Paenibacillus donghaensis sp. novo is proposed (type strain=KCTC $13049^T=LMG\;237S0^T$).

Keywords

References

  1. Ash, C., F. G. Priest, and M. D. Collins. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64: 253-260 https://doi.org/10.1007/BF00873085
  2. Berge, O., M. H. Guinebretiere, W. Achouak, P. Normand, and T. Heulin. 2002. Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int. J. Syst. Evol. Microbiol. 52: 607-616 https://doi.org/10.1099/00207713-52-2-607
  3. Buck, J. D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44: 992-993
  4. Elo, S., I. Suominen, P. Kampfer, J. Juhanoja, M. Salkinoja- Salonen, and K. Haahtela. 2001. Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. Int. J. Syst. Evol. Microbiol. 51: 535-545 https://doi.org/10.1099/00207713-51-2-535
  5. Euzeby, J. P. 1997. List of bacterial names with standing in nomenclature: A folder available on the internet. Int. J. Syst. Bacteriol. 47: 590-592 (List of Prokaryotic Names with Standing in Nomenclature. Last full update October 04, 2007. URL: http://www.bacterio.net) https://doi.org/10.1099/00207713-47-2-590
  6. Ezaki, T., Y. Hashimoto, and E. Yabuuchi. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39: 224-229 https://doi.org/10.1099/00207713-39-3-224
  7. Felsenstein, J. 1985. Confidence limit on phylogenies: An approach using the bootstrap. Evolution 39: 783-791 https://doi.org/10.2307/2408678
  8. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95-98
  9. Heo, S., J. Kwak, H. W. Oh, D. S. Park, K. S. Bae, D. H. Shin, and H. Y. Park. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16: 1753-1759
  10. Jung, W. J., J. H. Kuk, K. Y. Kim, T. H. Kim, and R. D. Park. 2005. Purification and characterization of chitinase from Paenibacillus illinoisensis KJA-424. J. Microbiol. Biotechnol. 15: 274-280
  11. Jung, W. J., S. J. Jung, K. N. An, Y. L. Jin, R. D. Park, K. Y. Kim, B. K. Shon, and T. H. Kim. 2002. Effect of chitinaseproducing Paenibacillus illinoisensis KJA-424 on egg hatching of root-knot nematode (Meloidogyne incognita). J. Microbiol. Biotechnol. 12: 865-871
  12. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J. Mol. Evol. 16: 111-120 https://doi.org/10.1007/BF01731581
  13. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150-163 https://doi.org/10.1093/bib/5.2.150
  14. Lee, J. S., Y. R. Pyun, and K. S. Bae. 2004. Transfer of Bacillus ehimensis and Bacillus chitinolyticus to the genus Paenibacillus with emended descriptions of Paenibacillus ehimensis comb. nov. and Paenibacillus chitinolyticus comb. nov. Int. J. Syst. Evol. Microbiol. 54: 929-933 https://doi.org/10.1099/ijs.0.02765-0
  15. Lee, T. H., P. O. Lim, and Y. E. Lee. 2007. Cloning, characterization, and expression of xylanase A gene from Paenibacillus sp. DG-22 in Escherichia coli. J. Microbiol. Biotechnol. 17: 29-36
  16. Marshall, B. J. and D. F. Ohye. 1966. Bacillus macquariensis n. sp., a psychrotrophic bacterium from sub-antarctic soil. J. Gen. Microbiol. 44: 41-46 https://doi.org/10.1099/00221287-44-1-41
  17. Mesbah, M., U. Premachandran, and W. B. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167 https://doi.org/10.1099/00207713-39-2-159
  18. MIDI. 1999. Sherlock Microbial Identification System, Operating Manual, version 3.0. MIDI., Newark, DE.
  19. Montes, M. J., E. Mercade, N. Bozal, and J. Guinea. 2004. Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int. J. Syst. Evol. Microbiol. 54: 1521-1526 https://doi.org/10.1099/ijs.0.63078-0
  20. Park, J. W., Y. S. Oh, J. Y. Lim, and D. H. Roh. 2006. Isolation and characterization of cold-adapted strains producing betagalactosidase. J. Microbiol. 44: 396-402
  21. Peilong, Y., P. Shi, Y. Wang, Y. Bai, K. Meng, H. Lue, T. Yuan, and B. Yao. 2007. Cloning and overexpression of a Paenibacillus $\beta-glucanase$ in Pichia pastoris: Purification and characterization of the recombinant enzyme. J. Microbiol. Biotechnol. 17: 58-66
  22. Poly, F., L. J. Monrozier, and R. Bally. 2001. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res. Microbiol. 152: 95- 103 https://doi.org/10.1016/S0923-2508(00)01172-4
  23. Priest, F. G., M. Goodfellow, and C. Todd. 1988. A numerical classification of the genus Bacillus. J. Gen. Microbiol. 134: 1847-1882
  24. Rodriguez-Diaz, M., L. Lebbe, B. Rodelas, J. Heyrman, P. De Vos, and N. A. Logan. 2005. Paenibacillus wynnii sp. nov., a novel species harbouring the nifH gene, isolated from Alexander Island, Antarctica. Int. J. Syst. Evol. Microbiol. 55: 2093-2099 https://doi.org/10.1099/ijs.0.63395-0
  25. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  26. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note No. 101. MIDI, Newark, DE
  27. Shida, O., H. Takagi, K. Kadowaki, L. K. Nakamura, and K. Komagata. 1997. Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis sp. nov. Int. J. Syst. Bacteriol. 47: 299-306 https://doi.org/10.1099/00207713-47-2-299
  28. Shida, O., H. Takagi, K. Kadowaki, L. K. Nakamura, and K. Komagata. 1997. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol. 47: 289-298 https://doi.org/10.1099/00207713-47-2-289
  29. Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849 https://doi.org/10.1099/00207713-44-4-846
  30. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  31. Uetanabaro, A. P., C. Wahrenburg, W. Hunger, R. Pukall, C. Sproer, E. Stackebrandt, V. P. de Canhos, D. Claus, and D. Fritze. 2003. Paenibacillus agarexedens sp. nov., nom. rev., and Paenibacillus agaridevorans sp. nov. Int. J. Syst. Evol. Microbiol. 53: 1051-1057 https://doi.org/10.1099/ijs.0.02420-0
  32. Wayne, L. G., D. J. Brenner, R. R. Colwell, and O. Authors. 1987. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464 https://doi.org/10.1099/00207713-37-4-463
  33. Yong, J. P. W. 1992. Phylogenetic classification of nitrogenfixing organisms, pp. 43-86. In G. Stacey, R. H. Burriw, and H. J. Evans (eds.), Biological Nitrogen Fixation. Chapman & Hall, New York