Changes of Physicochemical Properties and Antioxidant Activities of Red Wines during Fermentation and Post-fermentation

적포도주들의 발효와 후발효 중 물리화학적 성질과 항산화활성의 변화

  • No, Jae-Duck (Dept. of Life Science and Genetic Engineering, Paichai University) ;
  • Lee, Dae-Hyoung (Bae Sang Myun Brewery Co., Ltd.) ;
  • Hwang, Young-Soo (Dept. of Horticulture, Chungnam National University) ;
  • Lee, Sang-Han (Department of Food Science and Technology, Kyungpook National University) ;
  • Lee, Jong-Soo (Dept. of Life Science and Genetic Engineering, Paichai University)
  • Published : 2008.03.28

Abstract

The goal of this study was to vinify four varieties of grapes, namely Vitis labrusca L (Gerbong), Vitis labrusca B (Campbell Early), Vitis labrusca (Muscat Bailey A) and Vitis hybrid (Sheridan), and to investigate the changes in the physicochemical properties and antioxidant activity of the red wines during fermentation and post-fermentation. The ethanol content of the four red wines varied only slightly from 11.4%-12.8%, indicating that no significant change occurred during the fermentation and post-fermentation. The total anthocyanin and phenol contents as bioactive compounds were the highest level in the Vitis labrusca B red wine. The antioxidant activity was also the highest of 88.9% after 10 days fermentation in the Vitis labrusca B red wine and showed from only 36.6% to 61.7% in the other red wines, though the range decreased to 33.1%-64.1% during post-fermentation for 120 days at $4^{\circ}C$. Our results show that the vitis labrusca B red wine has the potential to become a functional red wine because of its high antioxidant activity.

본 연구에서는 고품질의 새로운 적포도주를 개발하기 위하여 먼저 거봉, 켐벨 어리, 마스캇 베리 A와 세레단 포도 품종들을 이용하여 4종류의 적포도주들을 제조한 후 이들의 발효와 후발효중의 물리화학적 성질과 항산화활성의 변화를 조사하였다. 4종류의 적포도주들의 에탄을 함량은 발효기간이나 품종간에 큰 차이없이 11.412.8%를 보였고, 생리활성물질로 알려진 총 안토시아닌과 페놀함량은 켐벨 어리 적포도주에서 가장 높았다. 항산화활성은 켐벨 어리 적포도주에서 발효 10일 후 88.9%로 제일 높았고 다른 포도주에서는 36.661.7%의 항산화활성을 보였다. 그러나, 이들 항산화활성은 후발효 120일 후에는 33.164.1%까지 감소하였다. 이상의 결과들을 요약해볼 때 켐벨 어리 적포도주가 높은 항산화활성과 좋은 기호도를 보여 새로운 가능성 적포도주로 기능성이 있을 것으로 사료된다.

Keywords

References

  1. Amous, A., D. Makris, and P. Kefalas. 2001. Effect of principal polyphenolic components in relation antioxidant characterics of aged red wines. J. Agric. Food Chem. 49: 5736-5742 https://doi.org/10.1021/jf010827s
  2. AOAC. 1984. Official Methods Analysis (14th ed.). AOAC International press, Washington DC
  3. Blois, M. S. 1958. Antioxidant determination by the use of stable free radical. Nature. 181: 1199-1200 https://doi.org/10.1038/1811199a0
  4. Burkitt, M. J. and J. Duncan. 2000. Effects of trans-Resveratrol on Copper-Dependent Hydroxyl-Radical Formation and DNA Damage: Evidence for Hydroxyl-Radical Scavenging and a Novel, Glutathione-Sparing Mechanism of Action, Arch. Biochem. Biophys. 381: 253-263 https://doi.org/10.1006/abbi.2000.1973
  5. Chang, S. S., B. Osric-Matijasevic, O. A. H. Hsih, and C. L. Huang. 1977. Natural antioxidants from rosemary and sage. J. Food Sci. 42: 1102-1106 https://doi.org/10.1111/j.1365-2621.1977.tb12676.x
  6. Choi, Y. M., K. W. Yu, N. S. Han, J. H. Koh, and J. S. Lee. 2006. Antioxidant activities and antioxidant compounds of commercial red wines. J. Food Sci. Nutr. 35: 1286-1290 https://doi.org/10.3746/jkfn.2006.35.9.1286
  7. Frankel, E. N., J. Kanner, J. B. German, E. Parks, and J. E. Kinsella. 1993. Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet. 341: 454-457 https://doi.org/10.1016/0140-6736(93)90206-V
  8. Friedman, L. A. and A. W. Kimball. 1986. Coronary heart disease mortality and alcohol consumption in Framingham. Am. J. Epidemiol. 124: 481-489 https://doi.org/10.1093/oxfordjournals.aje.a114418
  9. Husain, S. R., J. Cillard, and P. Cillard. 1987. Hydroxyl radical scavenging activity of Flavonoids. Phytochemistry. 26: 2489-2491 https://doi.org/10.1016/S0031-9422(00)83860-1
  10. Jayaprakasha, G. K., R. P. Singh, and K. K. Sakariah. 2001. Antioxidant activity of grape seed(Vitis vinifera) extracts on peroxidatin models in vitro. Food Chem. 73: 285-290 https://doi.org/10.1016/S0308-8146(00)00298-3
  11. Kallithraka, S., I. Arvanitoyanins, A. El-zajouli, and P. Kefalas. 2001. The application of an improved method for trans-resveratrol to determine the origin of Greek red wines. Food Chem. 75: 355-363 https://doi.org/10.1016/S0308-8146(01)00213-8
  12. Kanner, J., E. N. Frankel, R. Granit, B. German, and J. E. Kinsella. 1994. Natural antioxidants in grapes and wines. J. Agric. Food Chem. 42: 64-69 https://doi.org/10.1021/jf00037a010
  13. Kim, J. H., D, H. Lee, S. C. Jeong, K. S. Chung, and J. S. Lee. 2004. Characterization of antihypertensive angiotensin I-converting enzyme inhibitor from Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 14: 1318-1323
  14. Kim, J. H., D. H. Lee, S. H. Lee, S. Y. Choi, and J. S. Lee. 2004. Effect of Ganoderma lucidum on the quality and functionality of Korean traditional rice wine, Yakju. J. Biosci. Bioeng. Jpn. 97: 24-28 https://doi.org/10.1016/S1389-1723(04)70160-7
  15. Kim, J. H., S. H. Lee, N. M. Kim, S. Y. Choi, J. Y. Yoo, and J. S. Lee. 2000. Manufacture and physiological functionality of Korean traditional liquors by using dandelion (Taraxacum platycarpum). Korean J. Biotechnol. Bioeng. 28: 367-371
  16. Kimura, Y., H. Ohminami, H. Okuda, K. Baba, M. Kozawa, and S. Arichi. 1983. Effects of stilbene components of roots of polygonum ssp. on liver injury in peroxidized oil-fed rats. Planta Med. 49: 51-54 https://doi.org/10.1055/s-2007-969810
  17. Kinsella, J. E., E. Frankel, B. German, and J. Kanner. 1993. Possible mechanisms for the protective role of antioxidants in wine and plant foods. Food Technol. 47: 85-89
  18. Koeppen, B. H. and D. S. Basson. 1966. The anthocyanin pigments of Barlinka grapes. Phytochemistry. 5: 183-187 https://doi.org/10.1016/S0031-9422(00)85097-9
  19. Koh, K. H., J. H. Lee, K. R. Yoon, S. Y. Choi, and K. L. Seo. 1998. Phenolic compounds of Korean red wine and their superoxide radical scavenging activity. Food Sci. Biotechnol. 7: 131-136
  20. Landolfi, R., R. L. Mower, and M. Steiner. 1984. Modification of platelet function and arachidonic acid metabolism by bioflavonoids. Structure-activity relations. Biochem. pharmacol. 33: 1525-1530 https://doi.org/10.1016/0006-2952(84)90423-4
  21. Lee, S. J., J. E. Lee, and S. S. Kim. 2004. Development of Korean red wines using various grape varieties and preference measurement. Korean J. Food Sci. Technol. 36: 911-918
  22. Lee, S. Y., K. H. Lee, K. S. Chang, and S. K. Lee. 2000. The changes of aroma in wine treated with reverse osmosis system. Korean J. Food Sci. Technol. 32: 17-24
  23. Lu, Y. and F. L. Yeap. 1999. The polyphenol contituents of grape pomace. Food Chem. 65: 1-8 https://doi.org/10.1016/S0308-8146(98)00245-3
  24. Meyer, A., O. Yi, D. Pearson, A. L. Waterhouse, and E. Frankel. 1997. Inhibition of human low density lipoprotein oxidation in relation to phenolic antioxidants in grape(Vitis Vinifera). J. Agric. Food Chem. 45: 1638-1643 https://doi.org/10.1021/jf960721a
  25. Moroney, M. A., M. J. Alcaraz, R. A. Forder, F. Carey, and J. R. Hoult. 1988. Selectivity of neutrophil 5-lipoxygenase and cyclo oxygenase inhibition by an anti-inflammatory flavonoid glycoside and related aglycone flavonoids. J. Pharm. Pharmacol. 40: 787-792 https://doi.org/10.1111/j.2042-7158.1988.tb05173.x
  26. No, J. D., E. N. Lee, D. H. Lee, J. P. Chun, S. H. Lee, and J. S. Lee. 2007. Cardiovascular functionalities and antidementia $\beta$-secretase inhibitory activity of red wines. Food Biotechnology.( in press)
  27. Park, S. Y., J. S. Lee, K. W. Yu, N. S. Han, H. Lee, J. H. Koh, and K. S. Shin. 2006. Anti-complementary polysaccharides in grape wines, J. Food Sci. Nutr. 35: 1232-1236 https://doi.org/10.3746/jkfn.2006.35.9.1232
  28. Renaud, S. and M. de Lorgeril. 1992. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 339: 1523-1526 https://doi.org/10.1016/0140-6736(92)91277-F
  29. Sato, M., N. Ramarathnam, Y. Suzuki, T. Ohkudo, M. Takeuchi, and H. Ochi. 1997. Superoxide radical scavenging activities of wines, and antioxidative properties of fractions recovered from merlot wine pomace. pp. 359. Food Factors for Cancer Prevention. Springer, Tokyo
  30. Serafini, M., A. Ghiselli, and A. Ferro-Luzzi. 1994. Red wine, tea, and antioxidants. Lancet. 344: 626 https://doi.org/10.1016/S0140-6736(94)92017-6
  31. Shim, K. H., K. S. Kang, J. S. Choi, K. I. Seo, and J. S. Moon. 1994. Isolation and stability of anthocyanin pigments in peels. J. Food Sci. Nutr. 23: 279-286
  32. Teissedre, P. L., E. N. Frankel, A. L. Waterhouse, H. Peleg, and J. B. German. 1996. Inhibition of in vitro human LDL oxidation by phenolic antioxidants from grapes and wines. J. Sci. Food and Agric. 70: 55-61 https://doi.org/10.1002/(SICI)1097-0010(199601)70:1<55::AID-JSFA471>3.0.CO;2-X
  33. Torel, J., J. Cillard, and P. Cillard. 1986. Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry. 25: 383-385 https://doi.org/10.1016/S0031-9422(00)85485-0
  34. Tsutomu, T. and K. Yokotsuka. 1999. Angiotensin I -converting enzyme inhibitory peptides from wine. Am. J. Enol. Vitic. 50: 65-68
  35. Williams, R. L. and M. S. Elliot. 1997. Antioxidants in grapes and wine: Chemistry and health effects. pp. 150-173. In F. Shaihidi (ed.), Natural antioxidants: Chemistry, health effects and application. AOCS Press, Illinois
  36. Yilmaz, Y. and R. T. Toledo. 2006. Oxygen radical absorbance capacities of grape/wine industry byproducts and effect of solvent type on extraction of grape seed polyphenols. J. Food Compost. Anal. 19: 41-48 https://doi.org/10.1016/j.jfca.2004.10.009