Engineering Hybrid Proteins by Modular Recombination and Evolutionary Optimization

모듈성 단백질의 재설계 및 개량

  • 이승구 (한국생명공학연구원 시스템미생물연구센터) ;
  • 나유진 (한국생명공학연구원 시스템미생물연구센터) ;
  • 하재석 (한국생명공학연구원 시스템미생물연구센터) ;
  • 이정민 (한국생명공학연구원 시스템미생물연구센터) ;
  • 김선화 (한국생명공학연구원 시스템미생물연구센터)
  • Published : 2008.06.28

Abstract

Many proteins consist of distinctive domains that can act independently or cooperatively to achieve a unique function. As these domains evolve from a naturally existing repertoire of functional domains, this implies that domain organization is an intrinsic element involved in building the complex structure and function of proteins. Thus, identifying functional domains would appear to be critical to the elucidation of questions related to protein evolution, folding, and the engineering of hybrid proteins for tai- lored applications. However, the simple application of "Lego-like assembly" to the engineering of hybrid proteins is an oversimplification, as many hybrid constructs lack structural stability, usually due to unfavorable domain contacts. Thus, directed evolution, along with computational studies, may help to engineer hybrid proteins with improved physico-chemical properties. Accordingly, this paper introduces several approaches to functional hybrid protein engineering that potentially can be used to create modulators of gene transcription and cell signaling, and novel biosensors to analyze biological functions in vivo.

Keywords

References

  1. Allert, M., M. Dwyer, and H. W. Hellinga. 2007. Local encoding of computationally designed enzyme activity. J. Mol. Biol. 366: 945-953 https://doi.org/10.1016/j.jmb.2006.12.002
  2. Arnold, F. H. 2001. Combinatorial and computational challenges for biocatalyst design. Nature 409: 253-257 https://doi.org/10.1038/35051731
  3. Arnold, F. H. and G. Georgiou. 2003. Method in Molecular Biology, vol.230, Directed enzyme evolution: Screening and selection methods, Human Press Inc. Totowa, NJ
  4. Bhattacharyya, R. P., A. Remnyi, B. J. Yeh, and W. A. Lim. 2006. Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Annu. Rev. Biochem. 75: 655-680 https://doi.org/10.1146/annurev.biochem.75.103004.142710
  5. Bishop, A., O. Buzko, S. Heyeck-Dumas, I. Jung, B. Kraybill, Y. Liu, K. Shah, S. Ulrich, L. Witucki, F. Yang, C. Zhang, and K. M. Shokat. 2000. Unnatural ligands for engineered proteins: new tools for chemical genetics. Ann. Rev. Biophys. Biomol. Struct. 29: 577-606 https://doi.org/10.1146/annurev.biophys.29.1.577
  6. Bogarad, L. D. and M. W. Deem. 1999. A hierarchical approach to protein molecular evolution. PNAS 96: 2591- 2595
  7. Chang, M. C. Y., R. A. Eachus, W. Trieu, D.-K. Ro, and J. D. Keasling. 2007. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat. Chem. Biol. 3: 274-277 https://doi.org/10.1038/nchembio875
  8. Chevalier, B. S., T. Kortemme, M. S. Chadsey, D. Baker, R. J. Monnat, and B. L. Stoddard. 2002. Design, activity, and structure of a highly specific artificial endonuclease. Mol. Cell. 10: 895-905 https://doi.org/10.1016/S1097-2765(02)00690-1
  9. Choi, S.-L., E. Rha, D. Y. Kim, J. J. Song, S.-P. Hong, M.-H. Sung, and S.-G. Lee. 2006. High throughput screening and directed evolution of tyrosine phenol-lyase. Kor. J. Microbiol. Biotechnol. 34: 58-62
  10. Crameri, A., S.-A. Raillard, E. Bermudez, and W. P. C. Stemmer. 1998. DNA shuffling of genes from diverse species accelerates directed evolution. Nature 391: 288-291 https://doi.org/10.1038/34663
  11. De Lorimier, R. M., J. J. Smith, M. A. Dwyer, L. L. Looger, K. M. Sali, C. D. Paavola, S. S. Rizk, S. Sadigov, D. W. Conrad, L. Loew, and H. W. Hellinga. 2002. Construction of a fluorescent biosensor family. Protein Sci. 11: 2655-2675 https://doi.org/10.1110/ps.021860
  12. Deuschle, K., S. Okumoto, M. Fehr, L. L. Looger, L. Kozhukh, and W. B. Frommer. 2005. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci. 14: 2304-2314 https://doi.org/10.1110/ps.051508105
  13. Dong, M., W. H. Tepp, E. A. Johnson, and E. R. Chapman. 2004. Using fluorescent sensors to detect botulinum neurotoxin activity in vitro and in living cells. PNAS 101: 14701-14706
  14. Dwyer, M. A., L. L. Looger, and H. W. Hellinga. 2003. Computational design of a $Zn^{2+}$ receptor that controls bacterial gene expression, PNAS 100: 11255-11260
  15. Fehr, M., W. B. Frommer, and S. Lalonde. 2002. Visualization of maltose uptake in living yeast cells by fluorescent nanosensor. PNAS 99: 9846-9851
  16. Fehr, M., S. Lalonde, I. Lager, M. W. Wolf, and W. B. Frommer. 2003. In vivo imaging of the dynamic of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors, J. Biol. Chem. 278: 19127-19133 https://doi.org/10.1074/jbc.M301333200
  17. Fehr, M., D. W. Ehrhardt, S. Lalonde, and W. B. Frommer. 2004. Minimally invasive dynamic imaging of ions and metabolites in living cells, Curr. Opin. Plant Biol. 7: 345- 351 https://doi.org/10.1016/j.pbi.2004.03.015
  18. Fraser, H. B. 2005. Modularity and evolutionary constraint on proteins. Nat. Genet. 37: 351-352 https://doi.org/10.1038/ng1530
  19. Frase, H. B. 2005. Coevolution, modularity and human disease. Curr. Opin. Genet. Dev. 16: 637-644 https://doi.org/10.1016/j.gde.2006.09.001
  20. Frommer, W. B., M. Fehr, and S. Lalonde. WO 03/025220, 27 March 2003
  21. Guntas, G., T. J. Mansell, J. R. Kim, and M. Ostermeier. 2005. Directed evolution of protein switches and their application to the creation of ligand-binding proteins. PNAS 102: 11224-11229
  22. Ha, J. S., J. J. Song, Y. M. Lee, J.-H. Sohn, C.-S. Shin, and S.-G. Lee. 2007. Design and application of highly responsive fluorescence resonance energy transfer biosensors for detection of sugar in living Saccharomyces cerevisiae cells. Appl. Environmen. Microbiol. 73: 7408-7414 https://doi.org/10.1128/AEM.01080-07
  23. Hocker, B., C. Jurgens, M. Wilmanns, R. Sterner. 2001. Stability, catalytic versatility and evolution of the ($\beta$/$\alpha$)8- barrel fold. Curr. Opin. Biotechnol. 12: 376-381 https://doi.org/10.1016/S0958-1669(00)00230-5
  24. Joern, J. M., T. Sakamoto, A. Arisawa, and F. H. Arnold. 2001. A versatile high throughput screen for dioxygenase activity using solid-phase digital imaging. J. Biomol. Screen 6: 219-23 https://doi.org/10.1177/108705710100600403
  25. Kawarasaki, Y., K. E. Griswold, J. D. Stenson, T. Selzer, S. J. Benkovic, B. L. Iverson, and G. Georgiou. 2003. Enhanced crossover SCRATCHY: construction and highthroughput screening of a combinatorial library containing multiple non-homologous crossovers. Nucleic Acids Res. 31: e126 https://doi.org/10.1093/nar/gng126
  26. Kuchner, O. and F. H. Arnold. 1997. Directed evolution of enzyme catalysts. Trends Biotechnol. 15: 523-530 https://doi.org/10.1016/S0167-7799(97)01138-4
  27. Lager, I., M. Fehr, W. B. Frommer, and S. Lalonde. 2003. Development of a fluorescent nanosensor for ribose. FEBS Lett. 553: 85-89 https://doi.org/10.1016/S0014-5793(03)00976-1
  28. Looger, L. L., M. A. Dwyer, J. J. Smith, and H. W. Hellinga. 2003. Computational design of receptor and sensor proteins with novel functions. Nature. 423: 185-190 https://doi.org/10.1038/nature01556
  29. Mainfroid, V., K. Goraj, F. Rentier-Delrue, A. Houbrechts, M. E. M. Noble, T. V. Borchert, R. K. Wierenga, and J. A. Martial. 1993. Replacing the ($\beta$$\alpha$)-unit 8 of E. coli TIM with its chicken homologue leads to a stable and active hybrid enzyme. Protein Eng. 6: 893-900 https://doi.org/10.1093/protein/6.8.893
  30. Marvin, J. S., E. E. Corcoran, N. A. Hattangadi, J. V. Zhang, and H. W. Hellinga. 1997. The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors. PNAS 94: 4366-4371
  31. Michnick, S. W. 2003. Protein fragment complementation strategies for biochemical network mapping. Curr. Opin. Biotech. 14: 610-617 https://doi.org/10.1016/j.copbio.2003.10.014
  32. Miyawaki, A., J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien. 1997. Fluorescent indicators for $Ca^{2+}$ based on green fluorescent proteins and calmodulin. Nature 388: 882-887 https://doi.org/10.1038/42264
  33. Mochizuki, N., S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda. 2001. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1, Nature 411: 1065-1068 https://doi.org/10.1038/35082594
  34. Moore, G. L. and C. D. Maranas. 2003. Identifying residueresidue clashes in protein hybrids by using a second-order mean-field approach. PNAS 100: 5091-5096
  35. Mootz, H. D., D. Schwarzer, and M. A. Marahiel. 2000. Construction of hybrid peptide synthetases by module and domain fusions. PNAS 97: 5848-5853
  36. Nagai, T., A. Sawano, E. S. Park, and A. Miyawaki. 2001. Circularly permutated green fluorescent proteins engineered to sense $Ca^{2+}$. PNAS 98: 3197-3203
  37. Nagai, T., S. Yamada, T. Tominaga, M. Ichikawa, and A. Miyawaki. 2004. Expanded dynamic range of fluorescent indicators for $Ca^{2+}$ by circularly permuted yellow fluorescent proteins. PNAS 101: 10554-10559
  38. Okumoto, S., L. L. Looger, K. D. Micheva, R. J. Reimer, S. J. Smith, and W. B. Frommer. 2005. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. PNAS 102: 8740-8745
  39. Olsen, M., B. Iverson, and G. Georgiou. 2000. High-throughput screening of enzyme libraries. Curr. Opin. Biotechnol. 11: 331-337 https://doi.org/10.1016/S0958-1669(00)00108-7
  40. Ostermeier, M., J. H. Shim, and S. J. Benkovic. 1999. A combinatorial approach to hybrid enzymes independent of DNA homology. Nat. Biotechnol. 17: 1205-1209 https://doi.org/10.1038/70754
  41. Park, H.-S., S.-H. Nam, J. K. Lee, C. N. Yoon, B. Mannervik, S. J. Benkovic, and H.-S. Kim. 2006. Design and evolution of new catalytic activity with an existing protein scaffold. Science 311: 535-538 https://doi.org/10.1126/science.1118953
  42. Ponting, C. P. and R. R. Russel. 2002. The natural history of protein domains. Annu. Rev. Biophys. Biomol. Struct. 31: 45- 71 https://doi.org/10.1146/annurev.biophys.31.082901.134314
  43. Stemmer, W. P. C. 1994. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. PNAS 91: 10747-10751
  44. Tanimura, A., A. Nezu, T. Morita, R. J. Turner, and Y. Tojyo. 2004. Fluorescent biosensor for quantitative real-time measurements of inositol 1,4,5-triphosphate in single living cells. J. Biol. Chem. 279: 38095-38098 https://doi.org/10.1074/jbc.C400312200
  45. Tsien, R. Y. and A. Miyawaki. WO 98/40477, 17 September 1998
  46. Voigt, C. A., C. Martinez, Z. G. Wang, S. L. Mayo , and F. H. Arnold. 2002. Protein building blocks preserved by recombination. Nat. Struct. Biol. 9: 553-558
  47. Zhao, H. 2004. Staggered Extension process in vitro DNA recombination. Methods Enzymol. 388: 42-49 https://doi.org/10.1016/S0076-6879(04)88005-4