1-(4-chloro-2-fluoro-5-propargyloxyphenyl)-3-thiourea 유도체의 제초활성과 분자 유사성

Herbicidal Activity and Molecular Similarity of 1-(4-chloro-2-fluoro-5-propargyloxyphenyl)-3-thiourea Derivatives

  • 성민규 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 박관용 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 송종환 (한국화학연구원 신약연구단) ;
  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학부)
  • Soung, Min-Gyu (Division of Applied Biologies and Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Park, Kwan-Yong (Division of Applied Biologies and Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Song, Jong-Hwan (Korea Research Institute of Chemical Technology) ;
  • Sung, Nack-Do (Division of Applied Biologies and Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
  • 발행 : 2008.09.30

초록

제3세대 제초성 cyclic imide 유도체를 탐색하기 위하여 peroxidizing 제초제로써 40개의 1-(4-chloro-2-fluoro-5-pro-pargyloxypheny)-3-thiourea 유도체(1-40) 중, 3-R-치환체의 발아 전 벼(Oryza sativa)와 논피(Echinochlo crusglli)에 대한 평균 제초활성 값들을 제시하였다. 그리고 Urea 유도체(1-40)와 protox 효소의 기질분자인 protogen사이의 분자구조 유사성을 검토하였다. 논피에 대하여 선택성을 나타내는 화합물은 diallyl-치환체(20)와 3-nitro-치환체(33)이었으며 allyl-치환체(8)가 가장 큰 제초활성$(pI_{50}=4.71)$과 유사성 지수(S=0.81) 값을 나타내었다. 그리고 aryl-치환체(21-40)와 Protogen 사이의 중첩된 부피(C)와 S값 사이에 상관성이 좋았다.

In the search for third generation herbicidal cyclic imide derivatives, the average values of herbicidal activity ($pI_{50}$) in vivo (pre-emergence) of 40 new peroxidizing herbicides, 1-(4-chloro-2-fluoro-5-propargyloxyphenyl)thiourea derivatives (1-40) against rice plant (Orysa sativa) and barnyard grass (Echinochlor crus-galli) were studied. The molecular similarity between protoporphyrinogen IX (protogen) as the substrate of protox enzyme and Urea derivatives (1-40) was discussed quantitatively. The diallyl (20) and 3-nitro substituent (33) showed the selective herbicidal activity against barnyard grass. Allyl substituent (8) and their molecular similarity in dice (S=0.81) showed the highest levels of herbicidal activity ($pI_{50}$=4.71). Also, similarity indices (S) and superimposed volume (C) of protogen and aryl-substituents (21-40) showed good correlation.

키워드

참고문헌

  1. Fujita, T. and Nakayama, A. (1999) In Peroxidizing herbicides (Boger, P. and Wakabayashi, K. eds.), Structure-activity relationship and molecular design of peroxidizing herbicides which cyclic imide structures and their relatives. pp. 91-139. Springer, Heidelberg
  2. Uraguchi, R., Sato, Y., Nakayama, A., Sukekaya, M., Iwataki, I., Boger, P. and Wakabayashi, K. (1997) Molecular Shape Similarity of Cyclic Imides and Protoporphyrinogen IX. J. Pesticide Sci. 22, 314-320 https://doi.org/10.1584/jpestics.22.314
  3. Nandihalli, U. B., Duke, M. Y. and Duke, S. O. (1992) Quantitative structure-activity relationships of protoporphyrinogen oxidase-inhibiting diphenyl ether herbicides, Pestic. Biochem. Physiol., 43, 193-211 https://doi.org/10.1016/0048-3575(92)90033-V
  4. Meyer, A. Y. and Richards, W. G. (1991) Similarity of molecular shape. J. Comput. Aided Mol. Des. 5, 427-439 https://doi.org/10.1007/BF00125663
  5. Sung, N. D., Ock, H. S., Chung, H. J. and Song, J. H. (2003) Quantitative structure-activity relationships and molecular shape similarity of the herbicidal N-substituted phenyl-3,4-dimethylmaleimide derivatives. Korean J. Pesticide Sci. 7, 100-107
  6. Sung, N. D., Kim, C. H., Jin, D. L. and Park, C. S. (2004) The search of pig pheromonal odorants for biostimulation control system technologies: I. Ligand based molecular shape similarity of 5$\alpha$-androst-16-en-3-one analogues and their physicochemical parameters. Reprod. Dev. Biol. 28, 45-52
  7. Esteki, M., Henmateenejad, B., Khayamian, T. and Mohajeri, A. (2007) Multi-way analysis of quantum topological molecular similarity descriptors for modeling acidity constant of some phenolic compounds. Chem. Biol. Drug Des. 70, 413-423 https://doi.org/10.1111/j.1747-0285.2007.00585.x
  8. Bielinska-Waz, B., Nowak, W., Peplowski, L., Waz, P., Basak, S. C. and Natarajan, R. (2008) Statistical spectroscopy as a tool for the study of molecular similarity. J. Math. Chem., 43, 1560-1572 https://doi.org/10.1007/s10910-007-9284-0
  9. Rupp, M., Proschak, E. and Schneider, G. (2007) Kernel approach to molecular similarity based on iterative graph similarity. J. Chem. Inf. Model. 47, 2280-2286 https://doi.org/10.1021/ci700274r
  10. Peltason, L. and Bajorath, J. (2007) Molecular similarity analysis uncovers heterogeneous structure-activity relationships and variable activity landscapes. Chem. Biol. 14, 489-497 https://doi.org/10.1016/j.chembiol.2007.03.011
  11. Atlamazoglou, V., Thireou, T. and Eliopoulos, E. (2007) Using a pharmacophore representation concept to elucidate molecular similarity of dopamin antagonists. J. Comput. Aided Des. 21, 239-249 https://doi.org/10.1007/s10822-007-9110-6
  12. Lajiness, M. S. (1996) Applications of molecular similarity/ dissimilarity in drug research., In Structure-property correlations in drug research (Waterbeemd, Han van de ed.), Ch. 6, pp. 180-205
  13. Jeon, D. J., Kim, Y. M., Park, K. Y., Kim, H. R., Song, J. H., Hwang, I. T. and Ryu, E. K. (2001) Synthesis and herbicidal activities of 2-(5-propargyloxy-phenyl)-4,5,6,7-tetrahydro-2H-indazole and their related derivatives. Korean J. Pesticide Sci. 5, 68-71
  14. Park, K. Y., Song, J. H., Jeon, D. J., Soung, M. G. and Sung N. D. (2008) Synthesis and herbicidal activity of new 1-(4-chloro-2-fluoro-5-propargyl-oxyphenyl)-3-thiourea derivatives. Korean J. Pesticide Sci., 12, 103-110
  15. Tripos Sybyl. (2001) Molecular modeling and QSAR software on CD-Rom (Ver. 8.0) Tripos Associates, Inc., 1699 S. Hanley Road, Suite 303 St. Louis, MO. 63144-2913, U.S.A
  16. Marshall, G. R., Barry, C. D., Bosshard, H. E., Dammkoehler, R. A. and Dunn, D. A. (1979) In Computer-assisted drug design. The conformational parameter in drug design; Active analog approach.. (ed. Olsen, E. C. & Christoffersen, R. E.), American Chemical Society, Washington, D.C., pp. 205-226
  17. Clark, M., Cramer III, R. D., Jones, D. M., Patterson, D. E. and Simeroth, P. E. (1990) Comparative molecular field analysis (CoMFA). 2. Toward its use with 3D-structural databases. Tetrahedron Comput. Methodol. 3, 47-59 https://doi.org/10.1016/0898-5529(90)90120-W