Xylogone sphaerospora 유래 ${\beta}$-mannanase 정제 및 Konjac Glucomannan 가수분해 올리고당의 중합도별 Bifidobacterium spp.에 대한 증식활성

Purification of Xylogone sphaerospora ${\beta}$-mannanase and Growth Activity of Bifidobacterium spp. by Konjac Glucomannan Hydrolysates

  • 이희정 (경원대학교 공과대학 식품생물공학과) ;
  • 박귀근 (경원대학교 공과대학 식품생물공학과)
  • Lee, Hee-Jung (Department of Food and Bioengineering, Kyungwon University) ;
  • Park, Gwi-Gun (Department of Food and Bioengineering, Kyungwon University)
  • 발행 : 2008.09.30

초록

Sephadex G-100 column chromatography에 의해 Xylogone sphaerospora 유래 ${\beta}$-mannanase의 정제를 수행하여 비활성 8.44 units/ml, 정제배율 56.27을 나타내었다. SDS-PAGE에 의한 단일밴드를 확인하였고, 분자량은 42kDa으로 결정되었다. 정제효소에 의해 konjac glucomannan을 가수분해하여 activated carbon column chromatograph)에 의해 당가수분해물을 분리 회수하여 TLC에 의해 주요 당가수분해물은 합도 3과 4의 hetero type으로 확인되었으며 D.P. 3과 4의 예상되는 구조는 본 연구실에서 확보하고 있는 standard glucomannooligosaccharides에 의한 TLC에서 나타나는 Rf value 상으로 1차적으로 확인하고, Aspergillus niger 5-16 유래 정제 ${\beta}$-mannanase를 단계적으로 처리하여 가수분해 pattern을 TLC로 해석한 결과 D.P. 3의 구조식은 비환원말단 mannose로 부터 2번째에 1분자의 glucose가 결합하고 있는 hetero type의 구조(M-G-M)로, D.P. 4의 구조식은 비환원말단 mannose로부터 3번째에 1분자의 glucose가 결합하고 있는 hetero type의 구조(M-M-G-M)로 예상하고 있다. B. longumm, B. bifidum, B. infantis, B. adolescentis, B. animalis, B. auglutum, B. breve의 생육활성에 대한 중합도 3과4의 영향을 검토하기 위하여 modified-MRS 배지 상에 탄소원으로 중합도 3과 4를 대체하여 생육활성을 비교한 결과 B. longum에서는 D.P 4 glucomannooligosaccharide를 탄소원으로 대체한 경우 표준 MRS배지와 비교하여 3.9배의, D.P. 3을 처리한 경우에도 2.7배의 상대 활성을 나타내어 가장 우수한 생육활성을 나타냈었으며, B. breve의 경우에서도 D.P 4에서 2.47배, D.P 3에서 2.08배의 활성을 나타내었으며 B. bifidum에 있어서는 D.P. 4의 경우 2.8배의 상대활성을 나타내었다. Bifidobacterium 7균주 모두에 대해서 중합도 4의 올리고당이 중합도 3의 올리고당보다 생육활성에 크게 기여하는 것으로 나타났다.

Xylogone sphaerospora ${\beta}$-mannanase was purified by Sephadex G-100 column chromatography. The specific activity of the purified enzyme was 8.44 units/ml protein, representing an 56.27-folds purification of the original crude extract. The final preparation thus obtained showed a single band on SDS-polyacrylamide gel electrophoresis. The molecular weight was determined to be 42kDa. Konjac glucomannan was hydrolyzed by the purified ${\beta}$-mannanase, and then the hydrolysates was separated by activated carbon column chromatography. The main hydrolysates were composed of D.P. (Degree of Polymerization) 3 and 4 glucomannooligosaccharides. For elucidate the structure of D.P 3 and 4 glucomannooligosaccharides, sequential enzymatic action was performed. D.P 3 and 4 were identified as M-G-M and M-M-G-M (G- and M- represent glucosidic and mannosidic link-ages). To investigate the effects of konjac glucomannooligosaccharides on in vitro growth of Bifido-bacterium longum, B. bifidum, B. infantis, B. adolescentis, B. animalis, B. auglutum and B. breve. Bifidobacterium spp. were cultivated individually on the modified-MRS medium containing carbon source such as D.P. 3 and D.P. 4 glucomannooligosaccharides, respectively. B. longum and B. bifidum grew up 3.9-fold and 2.8-fold more effectively by the treatment of D.P. 4 glucomannooligosaccharides, compared to those of standard MRS medium. Especially, D.P. 4 was more effective than D.P. 3 glucomannooligosaccharide on the growth of Bifidobacterium spp.

키워드

참고문헌

  1. Kobayashi, Y., Echizen, R. and Mutai, M. (1984) Intestinal flora and dietary factors. Processingsof the 4th RIKEN symposium on intestinal flora. Japan Scientific Societies press. Japan Scientific Societies press, Tokyo. p 69
  2. Hoffman, K. and Bircher, J. (1969) Ver nderungen der bakteriellen Darmbesiedlung nach Lactulose-gaben. Schweiz Med Wschr. 99, 608-613
  3. Gyrgy, P., Norris, R. F. and Rose, C. S. (1954) Bifidus factor. I. Avariant of Lactobacillus bifidus requiring a special growth factor. Arch Biochem Biophys 4, 193-198
  4. Moon, J. W., S. H. Choi, Y. K. Shin, S. W. Lee, and K. H. Kang. (1998) Effect on the growth of Bifidobacterium spp. by transgalactooligosaccharides produced with $\beta$-galactosidase. Kor. J. Dairy Sci. 20, 283-289
  5. Ohtsuka K., Y. Benno, Y. K. Endo, H. Ueda, O. Ozawa, and T. Mitsuoka. (1989) Effect of 4'-galactosyllactose intake on human fecal microflora. Bifidus 2, 143-149
  6. Shimizu, K. and M. Ishihara. (1983) Isolation and Characterization of oligosaccharides from the hydrolyzate of larch wood glucomannan with endo-$\beta$-D-mannanase. Agr. Biol. Chem. 47, 949-955
  7. Shimokawa, T., S. Toshida, I. Kusakabe, T. Takenchi, and K. Murata. (1997) Isolation and quantification of alginate-derived oligouronic acids by fluorphore-assisted carbohydrate electrophoresis, Carbohydr. Res. 299, 95-98 https://doi.org/10.1016/S0008-6215(96)00333-3
  8. Dekker, R. F. H. (1983) Bioconversion of hemicellulose; aspect of hemicellulase production by Trichoderma reesei QM 9414 and enzymatic saccharification of hemicellulose. Biotechnol. Bioeng. 25, 1127-1146 https://doi.org/10.1002/bit.260250419
  9. Duffand, G. D., C. M. McCutchen, P. Leduc, K. N. Parker, and R. M. Kelly. (1997) Purification and characterization of extremely thermostable $\beta$-mannanase, $\beta$-mannosidase, and $\alpha$- galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068. Appl. Environ. Microbiol. 63, 169-177
  10. Kusakabe, I., R. Takahashi, S. Kusama, K. Murakami, A. Maekawa, and T. Suzuki. (1985) Struture of the glucomannooligosaccharides resulting from the hydrolysis of konjac glucomannan produced by a $\beta$-mannanase from Streptomyces sp., Agic. Biol. Chem. 48, 2943-2950
  11. Choi, J. Y. and G. G. Park. (2004) Purification of Bacillus sp. $\beta$-mannanase and the growth activity of Bifidobacterium spp. by guar gum hydrolysates. Kor. J. Microbiol. Biotechnol. 32, 117-122
  12. Kim, Y. J. and G. G. Park. (2005) Identification and growth activity to Bifidobacterium spp. of locust bean gum hydrolysates by Trichoderma harzianum $\beta$-mannanase. J. Korean Soc. Appl. Biol. Chem. 48, 364-369
  13. Lowry, O., H. Rosebrough, N. J. Fan, A. L. and R. J. Randall. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 271-275
  14. Miller, G. L. (1959) Use of dinitrosalicylic acid regent for determination of reducing sugar. Anal. Chem. 31, 426-431 https://doi.org/10.1021/ac60147a030
  15. Laemmli, U. K. (1970) Cleavage of struture protein during the assembly of head bacteriophage TA. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  16. McCleary, B. V. (1982) Purification and properties of a mannoside mannohydrolase from guar, Carbohydr. Res. 101, 74-79
  17. Park, G. G., S. Y. Lee, B. K. Park, S. S. Ham, and J. H. Lee. (1991) Characteristic features of an $\alpha$-galactosidase from Penicillium purpurogenum, J. Microbiol. Biotechnol. 2, 90-98
  18. Park. S. E., H. J. Lee, S. O. Kim, J. B. Kang, and G. G. Park. (2007) Growth activity of Bifidobacterium spp. by D.Ps of locust bean gum galactomannan hydrolysates from Trichoderma harzianum $\beta$-mannanase. Food Engineering Progress. 11, 279-283
  19. Zama, M., I. Kusakabe, G. G. Park, K. Tubaki, and K. Murakami. (1988) Specificity of $\beta$-mannanase from Penicillium purpurogenum for konjac glucomannan, Agric. Biol. Chem. 52, 519-524
  20. Deya, A. M., K. Nojiri, and S. Igarashi. (1982) Studies on the application of galactosyl lactose for infant formula. Yukijirushi Nyugyo Giiyatsu Kenkyusho Hokoku. 79, 19-26