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SOME LOCAL SPECTRAL PROPERTIES
OF T AND S WITH AT — SA =0

JONG-KWANG Y00 AND HYuxk HAN*

ABSTRACT. Let T and S be bounded linear operators on Banach spaces X and ,
respectively. A linear map A : X — Y is said to be an intertwiner if AT —SA = 0.
In this paper we study the relation between local spectral properties of T and S
on the assumption of AT — SA = 0. We give some example of intertwiner with
T and S.
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1. Preliminaries

Let X and ) be Banach spaces over the complex plane C. Let £(X,)) denote
the space of all bounded linear operators from & to ). And let £(X) be the
Banach algebra of all bounded linear operators on X. For a given T € L(X), let
o(T), op(T) and p(T') denote the spectrum, the point spectrum and the resolvent
set of T, respectively. The local resolvent set pr(x) of T' at the point z € X is
defined as the union of all open subsets U of C for which there is an analytic
function f: U — X which satisfies

(T-XNfA) =z forall AeU.
The local spectrum or(z) of T at z is then defined as

or(z) = C\ pr(z).
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Clearly, the local resolvent set pr(z) is open, and the local spectrum op(2) is
closed. For each z € X, the function f()) : p(T') — X defined by

fN=T-N""z
is analytic on p(T) and satisfies
(T—-Nf(A) =z forall Xe p(T).

Hence the resolvent set p(T') is always subset of pr(z) and hence or(z) is always
subset of o(T').

The analytic solutions occurring in the definition of the local resolvent set
may be thought of as local extensions of the function

(T - N"'z:p(T) = X.

There is no uniqueness implied. Thus we need the following definition.

An operator T € L(X) is said to have the single-valued extension property,
abbreviated SVEP, if for every open set U C C, the only analytic solution
f:U — & of the equation

(T-Nf(A)=0 forall XeU

is the zero function on U. Hence if T has the SVEP, then for each z € & there
is the maximal analytic extension of (T — A)~!z on pr(z).
For a closed subset F of C,

Xp(F)={z € X :07(z) CF}

is said to be an analytic spectral subspace of T. It is easy to see that Ap(F) is a
T—invariant linear subspace of X and also hyperinvariant for T, while generally
not closed. Analytic spectral subspaces date back to early work of E. Bishop [4]
and have been fundamental in the recent progress of local spectral theory, for
instance in connection with functional models and invariant subspaces and also
in the theory of spectral inclusions for operators on Banach spaces [13].

It is well known that T has the SVEP if and only if X7(¢) = {0}, and this is
the case if and only if Xr(¢) is closed. Moreover, if T does not have SVEP then
there exists some non-zero ¢ € X for which or(z) is empty.

2. Examples of intertwiners with T and S

For § € £(X) and S € L(Y) we define the operator C(S,T) on the Banach
space L(X,Y) of all bounded linear operators from X’ to Y by

C(S,T)A =SA— AT for Ac L(X,)).
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For a natural number n € N, define C(S,T)™ to be the n-th composition of the
operator C(S,T), That is,

C(S,T)"A = C(S, T)* 1(SA — AT)
_ = (n _\kan—k gk
_§<’“>( 1)k gn—k ATk,

In particular, if the operator T and S commute, if n € N is given, and if [
denotes the identity operator on X, then the identity C(S,T)"I = 0 holds if and
only if § = T + N for some nilpotent operator N of order at most n.

Define the space Z(S,T') as follow:

I(S,T)={A: X =Y | A is alinear map such that C(S,T)"A=0

for some n € N}

A linear operator A : X — Y is said to be a intertwiner(or intertwining lin-
ear operator) with T and S if A € Z(S,T). The space Z(S,T) contains many
significant classes of operators.

Example 1. Let A and B be complex Banach algebras. And let 6 : A — B be
an algebra homomorphism. Then for each a € A

6(a)f(z) — 6(ax) =0 forall ze A

Hence 9 € Z(Sp(a),Ta) for each a € A, in the sense that T, : A — A and
Sp(a) : A — A is the left multiplication operators by a and 6(a), respectively.

Example 2. Let A be a complex Banach algebra and let M be a complex
Banach A—module, for which am = ma for all a € 4 and m € M. Also, let
D : A — M be a module derivation, in the sense that the differentiation rule

D(zy) =xDy+ D(z)y forall z,y€ A
A routine calculation shows that
C(S., o)’ D=0 forall ac€A,

where T, : A — A and S, : M — M denote the left multiplication operators by
a, respectively. Hence D € Z(S,,T,) for each a € A.
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Example 3. Let A: X — Y and B: Y — & be bounded linear operators.
Then A € Z(\ — AB,M\ — BA) and B € I(AM — BA,X — AB) for every
complex number A € C. In particular, A € T(AB, BA) and B € I(BA, AB)
since BA € L(X) and AB € L(Y).

Example 4. Let T € L(H) be a bounded operator on a Hilbert space H and
U|T| be the polar decomposition of T', where |T'| = (TT *)2 and U is the appro-
priate partial isometry. The generalized Aluthge transform associated with T
and s,t > 0 is defined by

T(s,t) = |T|°U|T| .

In the case s =1 = %, the operator
T = |T|*U|T)?
is called the Aluthge transform of T'. It is easy to see that
IT|1SU|T}E" € Z(T(s,t), T(s + r, t — 1))

and
lTIT € I(T(S +r, t— T)7T(Sa t))

forall0<r <t

Let ‘H be a Hilbert space over the complex plane C with the inner product
{-,-). And L(H) denotes the C*-algebra of bounded linear operators on a Hilbert
space H. And let T* denote the adjoint of T. The operator T € L(H) is said to
be hyponormal if its self commutator [T*,T] = T*T — TT™* is positive, that is

(17, T]z,z) 2 0,

or equivalently
I1T*=| < || Tx|

for every ¢ € H. And T € L(H) is said to be a cohyponormal operator if T* is
hyponormal, equivalently, T*T < TT™*.

The following example is the main theorem of [13].
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Example 5. Let T € L£(K) be a cohyponormal operator on a Hilbert space K,
and let S € L£(H) be a hyponormal operator on a Hilbert space H. If A: K — H
is a bounded linear operator then A € Z(S,T) if and only if AT = SA.

3. Some local spectral properties of T and S with AT — SA=0

For an arbitrary operator T' € L(X), we define the analytic residuum, denoted
by §(T'), as the open set of points A € C for which there exists a non-zero analytic
function f : U — X on some open neighborhood U of A so that

(T-p)f(p) =0 forall pel.

Evidently, S(T') is a subset of the interior of the point spectrum of T. Moreover,
T has the SVEP if and only if S(T') = 0.

For a bounded linear operator T' € L(X), let 04(T) denote the surjectivity
spectrum of T'. That is,

Osur(T) ={X € C: (T - N)X # X}.
It is well known that (7)) = 04 (T) U S(T).

Proposition 1. Let T € L(X) and S € L(Y). If A € I(S,T) is continuous
then the analytic residuum of T is contained in the analytic residuum of S.

Proof. Suppose that C(S,T)"(A) = 0 for some n € N. Let A € S(T). Then
there is an open neighborhood U and a non-zero analytic function f : U — X
satisfying (T — p)f(u) =0 on U. Defineg: U — Y by

n-1 (k)
g(u):lgj(—l)kC(S,T)k(A)f k!(") forall peU.

Then g is well defined and non zero analytic on U. By the definition of the
commutator it is clear that

(S = wC(8,T)*(A) = C(8,T)*(A4) + C(S, T)*(A)(T - )

for all k € Nand p € C. Since (T — ) f(1) = 0 for any i € U, if we differentiate
this equation k-times, we have

(T —w)f® ) =kf& @) forall pcU and kecN.
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Therefore, for each p € U we have,

3
|
-

F® ()

(S = mglu) = S (~1*(S - WO(s, T A

3 >

|
_= O

(k)
> (-DHOE T (A + O DHAT - )
AT - ) f(0)

0.

Hence A € S(S). This completes the proof. [

Corollary 2. Let S € L(X,)Y) and R € L(Y, X). Then we have,
S(AI - RS)=8(M —-SR) forall AeC.
In particular, S(RS) = S(SR).
Proof. Since S € Z(A\ — SR, \I — RS) is continuous, it follows from Proposition

1 that
S(MI - RS)CS(M-SR) forall XeC.

The converse implication follows by interchanging R and S. [

Corollary 3. Let S: X — Y and R: Y — X be bounded linear operators.
Then for each A € C, A\l — RS has the SVEP if and only if \I — SR has the
SVEP. In particular, RS has the SVEP if and only if SR has the SVEP.

An operator T has finite ascent if for every A € C there is an n € N such that
ker(T — A)* = ker(T — A\)"*1, where ker(T') is the kernel of T.

Proposition 4. LetT € L(X) and S € L(Y). Suppose that there is an injective
map A with C(S,T)A =0. If S has finite ascent then T has finite ascent.

Proof. Tt is clear that
AT -N)"=(S-A"A forall ne€N and AeC
Suppose that ker(S — \)™ = ker(S — A\)™*! for some m € N. Clearly,

ker(T — \)™ C ker(T — )™ forall AeC.
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Let « € ker(T — A)™*1. Then we have

(S — ™Az = A(T — ™z
=0.

Therefore, we have Az € ker(S — A\)™*1 = ker(§ — A)™. And hence

AT - Nz = (S - A" Az
=0.

Since A is injective, we have (T'— A\)™ = 0. This completes the proposition. [

Corollary 5. Let S : X — ) and R : Y — X be bounded linear operators.
Assume that S and R are injective. For each A € C, \I — RS € L(X) has finite
ascent if and only if \I — SR € L(Y) has finite ascent.

Proof. Assume that AI — RS € £(X) has finite ascent. Then clearly we have
S € Z(M — SR, M - RS).

Since S is injective, by Proposition 4, Al — SR has finite ascent. The reverse
implication is obtained by symmetry. [

Lemma 6. Let T' € L(X) and A € C. Suppose that (T — A"z = 0 for some
non zero vector t € X and n € N, Then A € op(T).

Proof. We will prove this lemma by mathematical induction.
(i) For n =1, it is trivial.
(ii) Suppose that this lemma holds for n = &.
Forn =k +1, let (T — X\)¥*1z = 0 for some non zero z € X. Then,
case 1. (T — A)*z = 0. Then by the assumption A € a,(T).
case 2. (T'— A)Fz # 0. Since (T~ A\)(T — \)¥z = 0, we have X € a,(T).
By (i), (ii) this lemma holds for alln e N. O

Proposition 7. LetT € L(X) and S € L(Y). Suppose that there is an injective
linear map A € I(S,T). Then op(T) C 0p(S).
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Proof. Suppose that C(S,T)"(A) = 0 for some positive integer n € N. Let
X € 0,(T) and let z € X be an eigenvector for the eigenvalue A. Then we have

0=C(S,T) Az
C(S =\ T - \)"Az

- i (Z) (=1)F(S — N FA(T — Nz

Since Az # 0, by the injectivity of A, therefore by lemma 6 we have, A € 0,(S).
This completes the proof. U

Theorem 8. Let T € L(X) and S € L(Y). Suppose that C(S,T)A = 0 for
some A € L(X,Y). Then for every x € X, we have

(1) os(Az) C or(z) C og(Az) U {0}.

(2) If moreover A is bijective, then og(Az) = or(z).

Proof. Suppose that SA = AT. Let A ¢ op(z) and let z(-) : U — X be an
analytic function on an open neighborhood U of A such that (I' — p)z(u) = =
for all 4 € U. Then we have

Az = A(T - p)z()
= (§ - w)Az(u),
for all 4 € U. And hence A ¢ o5(Az). Thus os(Az) C or(z) is proved.

To show the second inclusion, let A ¢ og(Az) U {0} and let y(:) : V — Y
be an analytic function on an open neighborhood V of A with 0 ¢ V' such that
(S — pw)y(u) = Az for all 4 € V. Then define 2(-) : V — X by

1

p (Ay(p) — z).

()

Then clearly 2(-) is an analytic function such that (T'— p)z(x) = z, and hence
A ¢ or(z). Thus op(z) C o5(Az) U {0} is proved.
Suppose that 0 € os(Az). Then by the first inclusion we have

Us(A:L‘) = UT(a:).

It remains to show that if A is bijective and 0 ¢ og(Az) then 0 ¢ op(z).
Suppose that A is bijective. Let 0 ¢ og(Az). Then there is an analytic function
f: W — Y on an open neighborhood W of 0 such that

(S—u)f(p)=Az forall peWw.
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Then define the 2(-) : W — X by 2(u) = A~! f(u) Then we have

A(T = p)2() = (S - ) Az(n)
= (S~ Wi
= Az

for all 4 € W. Since A is bijective, we have

(T'—wz(p) =z forall peW.

Therefore, we have 0 ¢ or(z). This completes the proof. [

As an immediate application of Theorem 8, we obtain the following corollary.

Corollary 9. Let S € L(X,)) and R € L(Y,X). Then we have
(1) osr(Sz) C ors(z) C ogr(Sz) U {0} for everyz € X.
(2) If S is bijective then ors(x) = osr(Sz) for every z € X.

11.
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