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TIGHT MATRIX-GENERATED GABOR FRAMES IN L?(R4)
WITH DESIRED TIME-FREQUENCY LOCALIZATION

OLE CHRISTENSEN AND RAE YOUNG KIM*

ABSTRACT. Based on two real and invertible d x d matrices B and C such
that the norm [|CT B|| is sufficiently small, we provide a construction of
tight Gabor frames {EBmTCng}m,nezd with explicitly given and com-
pactly supported generators. The generators can be chosen with arbitrary
polynomial decay in the frequency domain.
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1. Introduction

The purpose of this paper is to present a construction of a class of tight matrix-
generated Gabor frames in L2(R?). In particular, we focus on construction of
frames with explicitly given generators and good time-frequency localization.

The question of construction of tight Gabor frames was first treated in the
seminal paper [4] by Daubechies, Grossmann and Meyer, which was dealing
with the one-dimensional case. Theoretical results in higher dimensions (i.e.,
characterization of tight Gabor frames) were obtained in [6] and [10]. Note that
non-tight Gabor frames with explicitly given dual generators were constructed
in [2] and [3]; the constructions in [3] work in any dimensions, but the expression
for the dual generator involves some book-keeping in high dimensions.

In the rest of the introduction, we collect some basic definitions and conven-
tions.

For y € R, the translation operator T, acting on f € L?(R?) is defined by

(TyN)(z) = fz -y), zeR™
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For y € R¢, the modulation operator E, is
Y
(Eyf)(z) = ™" f(z), zeRY,

where y - z denotes the inner product between y and 2 in R%. Given two real
and invertible d x d matrices B and C and a function g € L?(R¢) we consider
Gabor systems of the form

{EemTong}tminezt = {62”37""”9(33 - Cn)}

The dilation operator associated with a matrix C is

(Do f)(z) = |det C|*/2f(Cx), = €R-
Let CT denote the transpose of a matrix C; then

DcEy = EcryDc, Dcly=Tc-1yDe.
If C is invertible, we use the notation

ct = ()L
Furthermore, the norm of a matrix C is defined by
ICIl = sup [|Cz]|.
lfe|=1

m,n€Zd '

For f € L'(R?%) N L?(R%) we denote the Fourier transform by
Fi) =0 = [ | @)= da,

As usual, the Fourier transform is extended to a unitary operator on L%(R%).
The reader can check that

FTer = E_ciF.

Recall that a countable family of vectors {fx}rer belonging to a separable
Hilbert space K is a Parseval frame if

Y UE R =IfI Vf € H.

kel

Parseval frames are also known as tight frames with frame bound equal to one.
Like orthonormal bases, a Parseval frame provides us with an expansion of the
elements in H: in fact, if {fi}xer is a Parseval frame, then

F=Y (f fo)fw, Vf €H.

kel

On the other hand, the conditions for being a Parseval frame is considerably
weaker than the condition for being an orthonormal basis; thus, Parseval frames
yield more flexible constructions.

Our starting point is a characterization of Parseval frames with Gabor struc-
ture; several versions of this result exist in the literature, see [3}, 6}, [7], [10].
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Lemma 1. A family {EgmTong}mneze forms a Parseval frame for L*(R?) if
and only if

Y g(z = Bfn— Chk)g(z — Ck) = | det B|dn 0, a.e.x € RY. 1)
kezd

2. The results

We now present the first version of our results. We are mainly interested
in generators g, whose Z%translates form a partition of unity, but we state
the result under a weaker assumption. For simplicity we first consider the case
C=1

Theorem 1. Let N € N. Let g ¢ L*(R?%) be a non-negative function with
supp g C [0, N9, for which
Z g(z —n)>0, ae xR
nezd
1

VvVd N

Assume that the d x d matriz B is invertible and ||B| <

L*(R%) by

. Define h €

h(g) = ||det B|—2) )

> gz —n)

nezZd

Then the function h generates a Parseval frame {EBanh} for L2(R9).

m,n€zZt
Proof. Note that

0 S h S vV | detB'X{O,N]d,

this implies that h € L2(R%).
We now apply Lemma 1. Since B is invertible, for any n € Z¢ we have

In| = | B*Bn|| < |1BI ||BPnl];

thus, for n # 0, ||B*n|| > 1/||B||. Hence (1) is satisfied for n # 0 if 1/||B]| >
Vd N, ie.,if
1
B|| < ——.
181l < o=
For n =0, (1) follows from the the definition (2). a

The construction in Theorem 1 has several attractive features: it is given
explicitly, and it has compact support. Furthermore, polynomial decay of the
generator g of any given order in the frequency domain can be achieved by
requiring g to be sufficiently smooth:
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Lemma 2. Let k € N and let f € C*(R?) be compactly supported. Then
Fon<a(ene) "

Proof. Note that f is in L2(R%). Integration by parts for a variable z; implies

i) =‘[ f(@)e e dy
1 8f

— —27Tia:~'ydm
Wiy; J_oo 0T

Inductively, since f has partial derivative of order kd, we have

2 1 ©  ghdf ,
fol = ey
| 2, Gring ) o 55— 07%
< A
= 4
[T+ b
j=1
A
= P k72
H (1+ |
A direct calculation shows that
d
[Ja+m)? = @+mPa+hef) -0+l
j=1
> (Ll + e+ sl (1 + hal)?
> ..
> 142
This implies that

|F ()] < AL+ |7[?)~F/2.
O

Via a change of variable Theorem 1 leads to a construction of frames of the
type {EBmTCnh}

m,nezd '

Theorem 2. Let N € N. Let g € L?(R?) be a non-nenegative function with
supp g C [0, N]¢, for which

Z g(z—n)>0 forae zcR%

nezd
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Let B and C be invertible d x d matrices such that ||CTB|| < ! , and let
VAN
h(z) := ||det(CB)| ———40—(—{)———— (3)
Y. 9z —n)
nezd

Then the function Do-1h generates a Parseval frame {EBmTonD(,m h}
for L2(RY).

m,neZd

Proof. By assumptions and Theorem 1, the Gabor system {ECT Banh} -
mne
forms a tight frame; since

Dc-1E¢rpmTyn = EgmTenDo-1,
the result follows from Dg-1 being unitary. 4

We are particulary interested in the case where the integer-translates of the
function g generates a partition of unity, i.e.,

Z glz—n)=1 fora.e z €R?
nezd

In that case, the generator in Theorem 2 takes the form
Do-1h(z) = /| det(B)| g(C~'x).
Let By denote the Nth cardinal B-spline on R, and define the box-spline

d
Bn(z) =[] Bn(z:), © = (z1,...,24) € R

=1
Then
Z By(z—n) =1.
neZd

Thus, we obtain the following consequence of Theorem 2:

Corollary 1. Let N € N, and let B and C be inwertible d x d matrices such
1
that ||CTB|| < . Let
ICTBJ| < JiN

¢(z) = /| det(B)| By (C~1z).
Then {EBmTCncp}m » is a Parseval frame for L*(R%).

,NE
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FIGURE 1. The functions ¢ (Figure (a)) and |@| (Figure (b)) in
Example 1.
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Example 1. The one-dimensional B-spline of order 4 is given by

. 163
> z € [0,1f;
2 2 z?
! "o ’

Ba(w) = 4 —~3—+10:1:—4z2+%-, z€[2,3];
32 8
?—-837‘*‘23)2—%3 x€[3’4[’

0, =¢ 04

Define the box-spline
B4(:L‘) = B4(3:1)B4(x2), T = (1121, .’L'g) € R2
Let 2 x 2 matrices B and C be defined by
1 /1 6 2 0
55 3) o= (43)

A direct calculation shows that

o = s (4 B)l=mls (2 2) (G2
- (%)
10 /-

Thus

||CTB||NVd = “1\[62' 4/2=08<1.
Let

o(@) = [HB) BaC12).
By Corollary 1, {EBmT(;ncp}m,nEZ2 is a Parseval frame for L?(R?). On Figure

1, we plot the functions ¢ and |@|.

For functions g of the type considered in Theorem 2 and arbitrary real in-
vertible d x d matrices B and C, Theorem 2 leads to a construction of a (finitely
generated) tight multi-Gabor frame { EgmTcnhk }m neze ker, Where all the gen-
erators hy are dilated and translated versions of h:

Theorem 3. Let N € N. Let g € L*(R?%) be a non-negative function with
supp g C [0, N]%, for which

Z g(z —n) =1.

nezd

Let B and C be invertible d x d matrices and choose J € N such that
J > ||CTB|| vVd N. Define the function h by (3). Then the functions

hi = TycrDjo-1h, ke2in[0,J 1]
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t Iti-Gabor Parseval {E Tenh }
generate a multi-Gabor Parseval frame {EpmTcnhx m,n€Z4 keZin[0,J—1]¢ for
L2(R9).

1
Proof. The choice of J implies that the matrices B and jC satisfy the conditions

in Theorem 2; thus

fimimsp, g (5~ L))

forms a tight Gabor frame for L2(R?). Now,

1 1
=C = -Ck+C .
{ J n}nezd U { J n}nezd

k€Zan[o,J—1}¢

m,neczZe

Thus
{Dic-m-— Jom)}

U {(Dm_1 hy(- — %Ck - cn)}nEZd

nezs kezen(o,J—1)¢

U {ToaTycrDoc-sh()
kez4n(o,J—-1]¢

Il

nezd '

Inserting this into the expression for the tight frame leads to the result. |

Example 2. Let By be the 4th box-spline in R? as in Example 1 and let 2 x 2
matrices B and C be defined by

1/1 6 2 0
ool 8 o= (2)

|CTB||INVd = g 4/2=16<2.
Thus we can apply Theorem 3 with J = 2. Define

h(z) := +/| det(CB)|Bs(z).

By Theorem 3, the four functions
hi, = TycpDac—1h, k€ Z2 N[0, 1)

Then

generate a multi-Gabor Parseval frame { EgmTcnhk fm nez2 kezzno, )2 for L2(R?).
On Figure 2, we plot the functions h and |h|.
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(b)

FIGURE 2. The functions h (Figure (a)) and |h| (Figure (b)) in
Example 2.
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