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VAGUE SET THEORY BASED ON J-ALGEBRAS
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ABSTRACT. The notions of vague d-subalgebras, vague BCK-ideals, vag-
ue d-ideals, vague d*-ideals and vague d*-ideals are introduced, and their
properties are investigated. Relations between vague d-subalgebras, vague
BCK-ideals, vague d-ideals, vague d!-ideals and vague d*-ideals are estab-
lished.
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1. Introduction

Several authors have made a number of generalizations of Zadeh’s fuzzy set
theory [10]. Of these, the notion of vague set theory introduced by Gau and
Buehrer [3] is of interest to us. Using the vague set in the sense of Gau and
Buehrer, Biswas [2] studied vague groups. Jun and Park [5, 9] studied vague
ideals and vague deductive systems in subtraction algebras. In this paper, we
also use the notion of vague set in the sense of Gau and Buehrer to discuss the
vague theory on d-algebras. We introduce the notion of vague d-subalgebras,
vague BCK-ideals, vague d-ideals, vague d!-ideals and vague d*-ideals, and then
we investigate their properties. We give relations between vague d-subalgebras,
vague BCK-ideals, vague d-ideals, vague df-ideals and vague d*-ideals.

2. Preliminaries

Let K(7) be the class of all algebras of type 7. A BCK-algebra is a system
(X, *,0) € K(1), where 7 = (2,0), such that

(al) (Vz,y,2€ X) ((z*y) * (z % 2)) x (2 xy) = 0),
(a2) (Vz,y € X) ((z* (z*y)) xy = 0),
(a3) (Vz e X) (z*xz =0),
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(ad) (Vz € X) (0xz =0),

(ab) (Vz,ye X) (z*xy=0,yxz=0=> z=y).
A d-algebra is a system (X, *,0) € K(7), where 7 = (2,0), that satisfies (a3),
(a4) and (a5). We can define a relation < on a d-algebra X by z <y if and only
if z +y = 0. In a BCK-algebra (X, %,0) the following hold:

(b1) (vVz,y € X) ((z xy) xz =0),

(b2) (Vz,9,2z € X) (((z*2) % (y * 2)) * (z xy) = 0).
A d-algebra (X, x,0) is called a d*-algebra (see [7]) if it satisfies the identity (b1).

A nonempty subset I of a BCK-algebra X is called a BCK-ideal of X if it
satisfies the following axioms:

(I1) 0 €1,

(12) VzeX)(Vyel) (zxyel = z€l).

Let (X, *,0) be a d-algebra and @ # I C X. Then I is called a d-subalgebra of
X if z+y € I whenever z,y € I, and I is called a BCK-ideal of X if it satisfies
(I1) and (12).

A nonempty subset I of a d-algebra (X, ,0) is called a d-ideal of X (see [7))
it satisfies (I12) and

(Vz,ye X) (z el = zxy€el). (1)

A nonempty subset I of a d-algebra (X, *,0) is called a d¥-ideal of X (see [7])
if it is a d-ideal of X that satisfies the following axiom:

(Vz,y,z€ X) (xxyel,yxzecl = zxz€l). (2)
If a d'-ideal of a d-algebra X satisfies:
srxyclyxzel = (xx2)x(yx2) €I, (zxx)x(zxy) €1 (3)
for all z,y, 2 € X, then we say that I is a d*-ideal of X (see [7]).

Definition 1. [2] A vague set A in the universe of discourse U is characterized
by two membership functions given by:

(1) A true membership function

ta: U-— [0, 1],
and
(2) A false membership function
fa:U—-[0,1],

where t4(u) is a lower bound on the grade of membership of u derived from the
“evidence for u”, fa(u) is a lower bound on the negation of u derived from the
“evidence against u”, and

ta(u)+ fa(u) <1
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Thus the grade of membership of u in the vague set A is bounded by a
subinterval [t4(u),1 — fa(u)] of [0,1]. This indicates that if the actual grade of
membership of u is y(u), then

ta(u) < p(u) <1 - fa(u).
The vague set A is written as

A= {(u,[ta(v), fa(w)]) | u € U},
where the interval [ta(u), 1 — fa(u)] is called the vague value of u in A, denoted
by Va(u).
Recall that if I = [a1,b1] and Iz = [ag, b] are two subintervals of [0,1], we
can define a relation between Iy and I by I3 > I3 if and only if a; > a2 and
b1 > by. For o, 8 € [0, 1] we now define (a, §)-cut and a-cut of a vague set.

Definition 2. [2] Let A be a vague set of a universe X with the true-membership
function t4 and the false-membership function f4. The (o, §)-cut of the vague
set A is a crisp subset A(q ) of the set X given by

Afa,p) = {z € X | Va(2) 2 [0, O]}

Clearly A0y = X. The («, B)-cuts of the vague set A are also called vague-
cuts of A.

Definition 3. [2] The a-cut of the vague set A is a crisp subset A, of the set
X given by As = A(a,a)-

Note that Ag = X, and if & > §then A, C Ag and A(, g) = Ao Equivalently,
we can define the a-cut as

A, ={z € X | ta(z) > a}.

3. Vague d-algerbas

In this section we first define the notion of vague d-subalgebras. For our
discussion, we shall use the following notations on interval arithmetic:

Let I[0, 1] denote the family of all closed subintervals of [0,1]. We define the
term “imax” to mean the maximum of two intervals as

imax(I1, I2) := [max(a1, ag), max(b1, b2)],

where I; = [a1,b1], o = [ag,b2] € I[0,1]. Similarly we define “imin”. The
concepts of “imax” and “imin” could be extended to define “isup” and “iinf” of
infinite number of elements of I[0, 1].

It is obvious that L = {I[0, 1], isup, iinf, >} is a lattice with universal bounds
[0,0] and [1,1] (see [2]).

In what follows let X denote a d-algebra unless specified otherwise.
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Definition 4. A vague set A of X is called a vague d-subalgebra of X if the
following condition is true:

(Vz,y € X) (Va(z +y) = imin{Va(z), Va(y)}), (4)
that is,

ta(z*y) > min{ta(x), ta(y)}, (5)
1 - fa(z *y) > min{l - fa(z),1~ fa(y)}
forall z,y € X.

Example 1. Consider a d-algebra X = {0,a,b,c} with the following Cayley
table:

|0 a b ¢
0/0 0 0 O
ala 0 0 a
blb b 0 O
cle ¢ ¢ O

Let A be the vague set in X defined as follows:
A ={(0,[0.7,0.03}), {a, [0.7,0.03]), (b, [0.3, 0.08]), {c, [0.6,0.08]) }.

It is routine to verify that A is a vague d-subalgebra of X.

Example 2. Consider a d-algebra X = {0, q,b,c} with the following Cayley
table:

O o O ¥
O oR OO
O ot O Ol e
o O O o
OO e OO0

a
Let A be the vague set in X defined as follows:

A = {{0,[0.5,0.02]), {, [0.5,0.03]}, (b, [0.3,0.07)), (c, [0.5,0.03]) }.

It is routine to verify that A is a vague d-subalgebra of X,

Lemma 1. Every vague d-subalgebra A of X satisfies:
(Vo € X) (Va(0) = Va(z)), (6)
that is,
ta(0) > ta(z) and 1 — f4(0) > 1 — fa(z)
forallz e X,
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Proof. Let x € X. Then
ta(0) = ta(z x z) > min{ta(z), ta(z)} = ta(z)
and
1= fa(0) =1~ fa(z *z) 2 min{l — fa(z),1 - fa(z)} =1 - fa(2).
This shows that V4 (0) &= Va(z). a

Theorem 1. Let A be a vague d-subalgebra of X. Then for any o, 8 € [0, 1], the
vague-cut A(q,p) of A is a crisp d-subalgebra of X.

Proof. Let £,y € A(a,5)- Then Va(z) > [, f], that is, t4(z) > cand 1-fa(z) >
B; and Va(y) = [a, O], that is, ta(y) > @ and 1 — fa(y) > . It follows from (5)
that

ta(z *y) > min{ta(z),ta(y)} >
and
1 - fa(z +y) 2 min{l - fa(z),1- fa(®)} 2 B,
which mean that Va(z xy) > [o, §]. Hence x +y € Ay g). This completes the
proof. O

Definition 5. Let S be a d-subalgebra of X. A vague set A of X is called a
vague d-subalgebra of X related to S if it satisfies the following condition:

(Vz,y € 8) (Va(z * y) = imin{Va(z), Va(y)}), (7)
that is, (5) holds for all z,y € S.

Note that a vague d-subalgebra of X related to X means a vague d-subalgebra
of X, and every vague d-subalgebra of X is also a vague d-subalgebra of X related
to S for any d-subalgebra S of X.

Example 3. Consider the d-algebra (X, *,0) which is given in Example 2. Let
A be the vague set in X defined by

A = {(0,[0.5,0.03]), {a, [0.5,0.02]), (b, [0.3,0.07]), (¢, [0.5,0.02])},

and let S be a d-subalgebra of X. If S = {0} or {0,b}, then A is a vague d-
subalgebra of X related to S. Otherwise, A is not a vague d-subalgebra of X
related to S since

1—fa(axa)=1— fa(0) =0.97 < 0.98 = min{l — fa(a),1— fa(a)}

and

1—- falc*xc)=1— fa(0) =0.97 < 0.98 = min{1 — fa(c),1 - fa(c)}.
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Definition 6. A vague set A of X is called a vague BCK-ideal of X if the
following conditions are true:

(c1) (Vz € X) (Va(0) = Va(z)),
(c2) (Vz,y € X) (Va(z) = imin{Va(z *y), Va(y)}),
that is,
ta(0) 2 ta(z), 1 - fa(0) 2 1 - fa(x), (8)
and
tA(x) 2 min{tA(m * y)a ta (y)}: (9)
1 - fa(z) 2 min{l - fa(z*y),1 - fa(y)}
forall z,y € X.

Definition 7. A vague set A of X is called a vague d-ideal of X if it satisfies
(c2) and

(c3) (Vz,y € X) (Va(z xy) = Va(a)}),
that is,
ta(z*y) 2 talr) and 1 — fa(z *y) 2 1~ fa(z) (10)
forall z,y € X.

Example 4. Let X = {0,qa,b,¢,d} be a set with the following Cayley table:

x| 0 a b ¢ d
0(0 0 0 0 O
ala 0 a 0 a
bib b 0 ¢ 0
cic c b 0 ¢
d{ic ¢ a a 0

Then (X, *,0) is a d-algebra. Let A be the vague set in X defined as follows:
A ={(0,0.6,0.2]), (a, [0.6,0.2]), (b, 0.2,0.3]), (¢, [0.2,0.3]), (d, [0.2, 0.3))}.

It is routine to verify that A is both a vague BCK-ideal of X and a vague d-ideal
of X.

Example 5. Consider a d-algebra X = {0,qa,b,c} with the following Cayley
table:

|0 a b ¢
0{0 0 0 O
ala 0 0 a
b|b b 0 0
cle ¢ a O

Let A be the vague set in X defined as follows:
A= {(0,[0.7,0.2]), {a, [0.7,0.2]), (b, [0.5,0.3]), (e, [0.7,0.2]) }.
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It is routine to verify that A is a vague d-subalgebra of X, but neither a vague
BCK-ideal of X nor a vague d-ideal of X since

ta(b) = 0.5 < 0.7 =min{ta(b*c),ta(c)}
and/or
1—fa()=1-03=0.7<0.8=1-0.2=min{l— fa(bxc),1- fa(c)}.
In a d-algebra, a vague BCK-ideal need not be a vague d-subalgebra, and also

a vague d-subalgebra need not be a vague BCK-ideal as seen in the following
example.

Example 6. Let X = {0, a, b, c} be a d-algebra with the following Cayley table:

[0 a b ¢
0{0 0 0 O
ala 0 0 b
bib ¢ 0 O
clec ¢ ¢ O

Then X is not a BCK-algebra. Let A be the vague set in X defined as follows:
A = {(0,[0.8,0.07)}, (a, [0.8,0.07}}, (b, [0.8,0.07}), {c, [0.09,0.3]) }

Then A is a vague BCK-ideal which is not a vague d-subalgebra of X. The vague
set B in X defined by

B = {(0,10.8,0.07)), {(a, [0.09,0.2]), (, [0.09,0.2]), {c, [0.8,0.07)) }

is a vague d-subalgebra which is not a vague BCK-ideal of X.

From (c2) and (c3) it follows that every vague d-ideal of X is a vague d-
subalgebra of X, but the converse need not be true.

Example 7. Let X = {0, a, b, c} be a d-algebra with the following Cayley table:

x|0 a b ¢
0(0 0 0 0
ala 0 0 b
bib b 0 0
cle ¢ ¢ 0

Then X is not a BCK-algebra. Let A be the vague set in X defined as follows:
A = {{0,0.8,0.07]), {a, [0.8,0.07]), (b, [0.09,0.3]), {c, [0.09, 0.3]) }.

Then A is the vague d-subalgebra of X, but not a vague d-ideal of X since
ta(la*c) =ta(b) <ta(a) and/or 1 — fa(axc)=1— fa(b) <1— fa(a).
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Corollary 1. If A is a vague d-ideal of X, then V4(0) > Va(x) for all z € X,
i.e.,

ta(0) 2 ta(z) and 1 - f4(0) > 1 — fa(z)
forallz e X.

Proof. Since every vague d-ideal of X is also a vague d-subalgebra of X, it is
straightforward by Lemma 1. O

Note that every vague d-ideal of X is always a vague BCK-ideal of X, but
the converse need not be true. In Example 7, the vague set A in X is a vague
BCK-ideal of X, but not a vague d-ideal of X.

Proposition 1. Every vague BCK-ideal A of X satisfies:
(Vz,y € X) (z <y = Va(z) = Va(y))- (11)

Proof. Let z,y € X be such that £ <y. Then z *y = 0, and so
ta(z) > min{ta(z *y),ta(y)} = min{ta(0),ta()} = ta(y)

and
1 - fa(z) 2 min{l - fa(z+y),1 — faly)}
= min{1 - f4(0),1 - fa(y)}
= 1- fa(y).
This shows that V4(z) = Va(y). O

Corollary 2. Every vague d-ideal A of X satisfies (11).

Proposition 2. Every vague BCK-ideal A of X satisfies:
(i) (Vz,ye X) (zxy =0 = Va(z) = Va(y)).
(i) (Vz,y,2€ X) ((x*y) x2 =0 = Va(z) > imin{Va(y), Va(2)}).

Proof. (i) is straightforward by Proposition 1.
(ii) Let z,y,z € X be such that (z * y) * z = 0. By (i), we have Va(z xy) >
Va(z). It follows from (c2) that

Va(z) = imin{Va(z * y), Va(y)} = imin{Va(y), Va(2)}.
This completes the proof. 0

Corollary 3. Every vague d-ideal A of X satisfies:
(i) (Vz,y € X) (xxy =0 = Va(z) = Va(y)).
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(i) (Vz,y,2€ X) ((z*xy) x2=0 = Vu(z) > imin{Va(y), Va(2)}).

Definition 8. A vague set 4 of X is called a vague d*-ideal of X if it is a vague
d-ideal of X that satisfies:

(c4) (Vz,y,2 € X) (Va(z * 2) = imin{Va(z % y), Va(y % 2)}),
that is,
ta(z*z) > min{ta(z *y),ta(y * 2)},
1~ fa(z*2) > min{l — fa(z+y),1 - faly*2)}
forall z,y,z € X. '

Example 8. Consider the d-algebra X which is given in Example 7. Let A be
the vague set in X defined as follows:

A = {{0,[0.8,0.07)), (a,[0.8,0.07]), (b, [0.8,0.07]), {c, [0.09,0.4]) }.
Then A is a vague db-ideal of X.

Obviously, every vague d*-ideal of X is a vague d-ideal of X, but the converse
may not be true as seen in the following example.

Example 9. Let A be the vague set of X which is described in Example 4.
Then A is a vague d-ideal of X (see Example 4), but A is not a vague df-ideal
of X since

Va(bxc) =Vale) ¥ Va(0) = imin{Va(b* d), Va(d* c)}.

We now give a condition for a vague BCK-ideal of X to be a vague d-ideal of
X.

Theorem 2. In o d*-algebra, every vague BCK-ideal is a vague d-ideal.

Proof. Let A be a vague BCK-ideal of a d*-algebra X and let 2,y € X. Then
ta(z+y) > min{ta((z * y) * z),ta(z)} = min{t4(0),ta(x)} =ta(x)

and
1—fa(z*y) > min{l - fa((z *y) x2),1 - fa(z)}
= min{l — fa(0),1 — fa(z)} =1~ fa(z).
Hence A is a vague d-ideal of X. g

Corollary 4. In a d*-algebra, every vague BCK-ideal is a vague d-subalgebra.
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Definition 9. If a vague d'-ideal A of X satisfies

(c5) (Vz,y,z € X) (imin{Va((z * z) x (y * 2)), Va((z ¥ 2) * (z ¥ 9))}
> imin{Va(z * y), Va(y * 2)}),

that is,
min{ta((z * 2) * (y * 2)), ta((z x z) * (z * y))} > min{ta(z * y), Va(y * z)}

and

min{l — fa((z * 2) * (y x 2)),1 — fa((z*x2) * (2 xy))}
> min{l — fa(z *y),1 - fa(y *z)}

for all z,y, 2z € X, then we say that A is a vague d*-ideal of X.

Example 10. Consider the d-algebra X which is given in Example 5. Then X
is not a BCK-algebra. Let A be the vague set in X defined as follows:

A ={(0,[0.7,0.2}), (a,[0.7,0.2}), (b, [0.05, 0.6]), {c, [0.05,0.6]) }.
Then A is a vague d*-ideal of X.

Obviously, every vague d*-ideal in a d-algebra is a vague d*-ideal, but the
converse does not hold in general.

Example 11. Consider a d-algebra X = {0, a, b, c} with the following Cayley

table:
| b

TR O ¥
O 8 oo
o O Ol R
O OO

o 8 O

cle b b 0O
Then X is not a BCK-algebra. Let A be the vague set in X defined as follows:

A = {(0,[0.7,0.03]), {a, [0.7,0.03]), (b, [0.07,0.8}), (¢, [0.07,0.8])}.
Then A is a vague d*-ideal of X, but not a vague d*-ideal of X since

imin{V4(0 * a), Va(a % 0)} = Va(a)
> Va(b) = imin{V4(0), Va(b)}
= imin{V4((0 * ¢) * (a * ¢)), Va((c*0) x (c * a))}.

Since every BCK-algebra is also a d-algebra, we immediately obtain the fol-
lowing result from Proposition 2(i).

Lemma 2. Every vague BCK-ideal A of a BCK-algebra X satisfies:
(Vz,ye X) (xxy =0 = Va(z) = Va(y)). (13)
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Theorem 3. If X is a BCK-algebra, then every vague BCK-ideal of X is a
vague d*-ideal of X.

Proof. Let A be a vague BCK-ideal of a BCK-algebra X and let z,y, 2 € X. Since
(z *y) *z = 0 by (b1), it follows from Lemma 2 that Va(z *y) = Va(z), proving
(c3). Note that ((z*2)x(y*2))*(z+y) = 0, and hence Va((zx2)*(y*z)) = Va(z*y)
by Lemma 2. Using (c2), we have

Valz * 2) = imin{Va((z * 2) % (y * 2)), Va(y * 2)} > imin{Va (2 * y), Va(y * 2)}.
This proves (c4). By (al) and (b2), we get ((z*z) * (zxy)) * (y*z) =0 and
((z*2)*(y*z))*(z*y) = 0. It follows from Lemma 2 that Va((z*x)* (2xy)) =
Va(y* z) and Va((z * 2) % (y * z)) = Va(z *x y). Hence

imin{Va((z * 2) * (y * 2)), Va((z * z) * (z * y))} >= imin{Va(z * y), Va(y * z)},

showing (c5). This completes the proof. O

Remark 1. (1) We have the following diagram in which reverse implications is
not valid.

Vague d*-ideal

!

Vague df-ideal

}

Vague d-ideal

SN

Vague d-subalgebra Vague BCK-ideal

(2) In a d*-algebra, the concepts of vague d-ideal and vague BCK-ideal coin-
cide.

(3) In a BCK-algebra, the concepts of vague d-ideal, vague d!-ideal, vague
d*-ideal and vague BCK-ideal coincide.
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