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PRIME FACTORS OF A" +1

YONG SU SHIN

ABSTRACT. We find a necessary and sufficient condition that the prime
factors of A™ 41 and A™ 41 coincide for odd positive integersn > m > 1.
Moreover, we also find a necessary and sufficient condition that the set of
all prime factors of A™ + 1 is a subset of those of A” +1forn > m > 1.
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1. Introduction

Let Z be the set of all integers and Z* be the set of all positive integers. In
[1], they showed some calculations of factorizations of positive integers of the
form A™ & 1 when A is a positive integer with A > 1 and n € Z*. In [3], they
gave a necessary and sufficient condition that the prime factors of A™ — 1 and
A™ — 1 coincide when A € Z* and A > 1. They also found a necessary and
sufficient condition that the set of prime factors of A™ — 1 is a subset of those
of A" —1 whenn >m > 1.

In this paper, we find a necessary and sufficient condition that the prime
factors of A™ + 1 are the same as those of A" + 1 whenn > m > 1 (see
Theorem 3). Furthermore, we find a necessary and sufficient condition that the
set of prime factors of A™ + 1 is a subset of those of A" +1 whenn >m > 1
(see Corollary 4).

2. Prime Factors

First of all, we introduce some notations and recall some elementary facts in
number theory (see [2] and [4] for more elementary details).
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Remark 1. (a) We denote the greatest common divisor of two integers a
and b by (a,b) where a and b are not both 0.
(b) Let a and b be in Z and a = bq + ¢ for some ¢ and c in Z. Then
(a,b) = (b, c).
(c) Let a € Z with |a| > 1 and n € Z*. Then

ar-1_ [ n—i~1
a—1 Z(z')(a_l) tn
i=0
n n! L .
where 1) = eI a binomial coefficient (see [3]).

(d) Note that 3* — 2¥ = 1 has no integer solution with z > 2.

Lemma 2. Let m and n be odd positive integers with (m,n) = 1 and a € Z*
with a > 1. Then

(@™ +1,a"+1)=a+1.

Proof. Let
n = mg+ry, 0<r<m,
m = riga+re, 0<7ry<ry,
(1) ry = Tagqz+rs, 0<r3<ry,
Tk = Tk+1Qk+1, Th+1 = L.

Using equation (1),
(@™ +1,a™ +1)
=(-a™-1,-a"—1)
=((=a)™—1,(=a)" - 1) (. m and n are odd)
=((-a)" —1,(—a)™—1) (. Remark 1(b))

= ((—a)™* —1,(=a)™ —1), (. Remark 1(b))
= ((-a) = 1,(=a)™ - 1), (.- Remark 1(b))
=(a+1,(—a)™ - 1),
which divides a + 1. Note that (a+1) | (™ +1) and (a+ 1) | (@" + 1) since m
and n are odd. In other words,
@+1)[(@"+La"+1)|(e+1) = (@ +La"+1)=a+l
as we desired. a

Theorem 3. Let A € Z* with A > 1 and let n and m be odd positive integers
withn > m > 1. Then the prime factors of A™ + 1 and A™ + 1 coincide if and
onlyif A=2,m=1, and n=3.
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Proof. First of all, by Remark 1 (c),

AT4l —An -1
A+1 — -4-1
- %))——:_—1% (' n is odd)
2 =3 .
@) - [Z (?>(-—A N s
=0
n—-2 n )
= {Z (J(-A — 1)"—’—2} (~A-1)+n
§=0
Moreover, note that
3) %:An—l_m—u..._ul.

It follows from Remark 1 (b), and equations (2) and (3) that
(AP A2 AL LA+ D) = (n, A4 1)
We first assume that n = p is an odd prime number and m = 1. Then

(A1 A2 4 A4 1,A41)
(4) = (AP A2 4. A4 1,A41)
= (p,A+1)

is either 1 or p. If a prime number g divides (4P~ — AP~2 4 ...~ A4+ 1, A+ 1),
then it divides (p, A+ 1). In other words, ¢ | p, that is, ¢ = p. This means from
equation (4) that AP~! — AP~2 ... — A+ 1 and A + 1 have the same prime
factors, and so AP~! — AP=2 4 ...~ 4 +1 = p* for some £ € Z* U {0}.

Notice that

APl AP2 41
APHA-1D)+ AHA-D)+- -+ AA-1)+1

> AP 2L APt A4l (PAS)
(5) 2 2p—2+2p"4+...+2+1
> 244241
S———
21 _times
= D

and thus £ > 1. Since AP~! — AP~24..._ A+ 1 and A+ 1 have the same prime
factors, A + 1 is also of the form p® for some o € Z1, that is, A = p® — 1.

Now assume p = 3. Then

APl o AP2 4 A1
= A2-A+1
= 36
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for some 8 € Z*. Since A = 3% — 1, we also have that
3F = A2-A+1
(3 —1)2-(3*-1)+1
— 32a _ 3a+1 + 3
3(32a—1 — 34 1),

which follows that « = =1, and thus A=3-1=2.

f

Suppose p > 3. If we consider equation (5) for this case, then we obtain
APTL AP L A4 1>p

In other words,
APl AP At 1=t
for some £ € ZT with ¢ > 2. Furthermore, notice that p? divides

> () -a- 1)?“1'-1] ,

i=0
and so,
APl A2 4 ... A41=0 (modp?), and
p—2
[Z <I;> (—A- 1)”‘1“1} =0 (mod p?),
=0
and hence

p

2
(Ap—l_Ap—2+..._A+1)_ l ([;)(__A_l)p—i—l‘| =p=0 (modpz),

Il
<)

i
which is a contradiction.

Now suppose that m = 1 and n is a composite number. Let p and ¢ be two
distinct prime factors of n. Note that p and g are odd primes since n is odd and

(A+1) | (AP +1) [ (A"+1) and (A+1)|(A%+1)] (4" +1).

Since A+ 1 and A™ + 1 have the same prime factors, so do those of AP 41 and
A%+ 1. By the same idea as the above case n = p is a prime number, p =q =3
and A = 2. Hence n = 37 for some v € Z* and A" + 1 is of the form 3° for
some § € Z*t, and thus we have

A +1=2"4+1=2"11=3 o 392 =1

Since v > 1, by Remark 1 (d), we have only integer solution § = 2 and v = 1.
Hence n = 37 = 3, which is a contradiction since n is a composite number.
Now assume n > m > 1 and let g = (m,n). Then m = Mg and n = Ng for
some odd positive integers M and N, and (N, M) = 1. Let B = A9.
Then, by Lemma 2

(BM+1,BN+1)=B+1.
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Moreover, since BM + 1 and BY + 1 have the same prime factors and (BM +
1,BY 4+ 1) = B+ 1, the prime factors of B + 1 and B + 1 coincide. By what
we proved earlier, this implies B = 2 and M = 3. Furthermore, since the prime
factors of B + 1 and BN + 1 coincide, we also have that N = 3, which is a
contradiction since (M, N) =3 # 1.

Conversely, if A=2,m=1, and n = 3, then A+ 1 and A" 41 have the same
prime factors, as we wished. d

Corollary 4. Let m and n be odd positive integers and A € Z* with A > 1 and
n>m 2> 1. Then the prime factors of A™ + 1 are a subset of those of A™ +1 if
and only if A= 2, either m =1 or m =3, and n 1s any odd positive integer n.

Proof. Let (m,n) = g. Then there exist odd positive integers M and N such
that m = Mg and n = Ng. Note that (M, N) = 1. Let B = A9. Then, by
Lemma 2
(BM+1,BN +1)=B+1.

Hence the set of the prime factors of B 4 1 is a subset of that of BN + 1 if
and only if the prime factors of B+ 1 and BM +1 coincide. Thus by Theorem 3
B = 2 and either M =1 or M = 3. Note that g = 1 since A = B = 2, i.e,,
either m = 1 or m = 3. Hence A™ + 1 = 3 or 3%2. Moreover, since A" + 1 is a
multiple of A + 1 = 3, the set of the prime factors of A™ + 1 always contains 3
for any odd positive integer n with n > 3.

Conversely, if A = 2, and either m = 1 or 3, then the set of prime factors of
A™ +1 is a subset {3} of those of A™ + 1 for any odd positive integer n, as we
wished. 0
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