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OBLIQUE PROJECTIONS AND SHIFT-INVARIANT SPACES

SANG DON PARK * AND CHUL KANG

ABSTRACT. We give an elementary proof of one of the main results in [H.O.
Kim, R.Y. Kim. J.K. Lim, The infimum cosine angle between two finitely
generated shift-invariant spaces and its applications, Appl. Comput. Har-
mon. Anal. 19 (2005) 253-281] concerning the existence of an oblique pro-
jection onto a finitely generated shift-invariant space along the orthogonal
complement of another finitely generated shift-invariant space under the
assumption that the generators generate Riesz bases.
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1. Introduction

Let H be a separable complex Hilbert space over the complex field C. Suppose
that U and V are closed subspaces of H. Then, the oblique projection Py v of H
onU along V1 is well-defined if H = U4V, ie, H = U+ V4L and UnV+ = {0}
(1]. In this case, for each f € H, f = u+v! for unique v € U and vt € V1,
Hence Pyivf = u is a well-defined bounded operator. It is well-known that
the existence of the oblique projection is closely related with the concept of the
following angle R(U, V') between the two closed spaces U and V' [9]:

R(U,V) = ess-inf “PVUH,
weU\{0} [Ju

where Py denotes the orthogonal projection of H onto V. In general, R(U, V) #
R(V,U). It is shown in [9] that the oblique projection exists if and only if
R(U,V) > 0 and R(V,U) > 0. In this article, we show, using elementary
methods, that if U and V' are finitely generated shift-invariant subspaces of
L?(R9) with Riesz generators, then the angle condition R(U, V) can be concretely
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realized as the essential supremum of the operator norm of certain family of
matrices.

First, we need some definitions. A sequence {f;};cr C H is said to be a Riesz
basis if there exist positive constants A and B, called Riesz bounds, such that,
for each {c;}ier € £2(I)

A e’ <

i€l

2
<B Z |Ci|2.

iel

Zcifi

i€l

It turns out that a Riesz basis is a bounded unconditional Schauder basis of H.
If, for each f € H,
AFI2 < S UE P < BISIP
i€l
then we say that {f;}icr is a frame for H with frame bounds A and B. 1t is
well-known that a Riesz basis with bounds A and B is also a frame with bounds
A and B [10].

A closed subspace S of L2(R%) is said to be shift-invariant if f(z —a) € S
for each f(z) € S and each o € Z2 [3, 8]. If S is the closed linear span of
{f(z —a) : f € F} for some F C S, then we say that F' generates S. For
z € T¢=1[0,1]¢ and f € L*(R?%), we define

~

file = (f(z = a))aeze,

which is well-defined a.e. Here the Fourier transform f of f is defined via
fla) = [ foem=t
Rd

for f € L2(RY)NL2(RY) and extended to be an isometry of L?(R¢) by a theorem
of Plancherel. We let §||:c ={fljlz: feS}forzc T¢. Then f L S if and only

if fijz L 8|5 for a.e. z € T and for each s € S [2].
Then the following facts are well-known (3, 5, 8]:

Proposition 1. Suppose that S is a shift-invariant generated by ® = {¢1,-- -, Pn}.
For z € T¢, define the following Gramian of ® at x via

Ge(z) = ((éj”z’éﬂlx))

1<i,5<n’
which is easily seen to be a non-negative definite n x n matriz. Then {¢(z —a):

acZioc <I>} is a Riesz basts of S with Riesz bound A and B if and only if, for
ae. z €Te Al, < Go(z) < Bl,, where I, is the n x n identity matriz. This,
in turn, holds if and only if {(]gjnm 11<5< r} s a Riesz basis for S'HZ a.e. with

uniform Riesz bounds A and B. Note that, in this case, Go(z) is invertible a.e.
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Moreover, in this case, f € S if and only if there ezist a1, ,a, € L*(T%) such
n

that f“m = Zaj(w)qgj”w a.e.
j=1

For the applications of the theory of shift-invariant spaces to wavelets and
Gabor systems, see [3, 4, 8].

In this article, we give an elementary proof of one of the main results in 7] con-
cerning the existence of an oblique projection of L?(R¢) onto a finitely generated
shift-invariant space along the orthogonal complement of another finitely gener-
ated shift-invariant space in the case that the finitely generated shift-invariant
spaces have the same number of Riesz generators. Even though Theorem 4.10
in [7] is nice and general, the proof is rather complicated. Hence it is not easy to
grasp what really is behind the result. We believe our proof is much elementary
and conveys the main idea of the proof the above-mentioned result.

2. Main results

We first characterize the existence of the oblique projection of two shift-
invariant spaces via mixed Gramians under mild conditions.

Throughout the rest of this article we assume the following:
Let @ = {¢17¢2,' t ,(bT}a U = {,‘/)1’¢27' o 91/)1“} - L2(Rd)7 and let U be the
shift-invariant space generated by ® and V the shift-invariant space generated
by ¥. Suppose that {¢(z — a) : ¢ € ®,a € Z%} is a Riesz basis of U and
{¥(x—0e): 1 € U,a € Z%) is a Riesz basis of V. We may also assume that their
common Riesz bounds are A and B. Note that this situation is not uncommon
in many applications [8]. Let

G(@) = Gou(@) = (i b)) _, z€TY,

1<ig<r

be the mized Gramian of ® and ¥, and let Go(z) and Gy(z) be the Gramians
of ® and ¥, respectively. Recall that the three matrices are well-defined a.e. We
need the following lemma:

Lemma 1. If Py vy is well-defined, then so are PUH 1y, @€ Moreover,

1Posvl = esssup [Py g,
T

Proof. The first part follows by slightly adapting the argument in the proof of
Lemma 3.7 in [6]. The second part follows from the first part and Theorem
4.5 of [3] by noticing that z — Pﬁllw n is the range operator of the clearly

shift-preserving operator Py y. ]
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Theorem 1. The oblique projection of L*(R%) on U along V= is well-defined

if and only if G(z)™! exist and their norms are bounded above uniformly a.e.
x c T

Proof. (=): Let b= (by,bg,---,b)T € C" be arbitrary. Define
C(I) = (cl ($)> o ,CT("I"))T = Gg,(.’l?)_lb, (1)
Jllz = ZQ(w)d;iHm- (2)
i=1

Note that ¢(z) is a 1-periodic r-dimensional vector-valued function and Gy (z) ™! <
(1/A)I, a.e. Hence

z;l/[rd |ei(z)]? dz = /{rd HG\I,(:I:)'lb

Hence each ¢; € L?(T¢). Therefore (2) defines g € V by Proposition 1. Then
there exist unique u € U,v+ € V1 such that ¢ = uw + v'. Since u € U, there
exist a; € L?(T%),1 <4 < r such that

2 1 2
lcr dz < ye ./Td [|bllc- dz < oo.

Gy = Zaz‘(x)d;i[[z) )
i=1

by Proposition 1. Since g —u € V', Gllz — Uz L Vllz a.e. (see the discussion in
Introduction). Therefore, <1l||w1,ﬁl”m> = <§|!m7[;l|[x> foreach I =1,.--,r. Now
notice that

T
<ﬂ||z‘/’l||x> =) G(z),iei(x),
§=1
and that

(Gfa> 1)) ZZ (G (@)1, ib;Gu (@)

i=1 j=1

- Zb Z Gu(z 1)%0@(35)?1

j=1 =1
= ijaj,l = by.
j=1

Hence G(z)a(z) = b a.e. This shows that G(z) is invertible a.e.
It remains to show that ||G(z)™!|| < M a.e. z € T? for some M < co. Let
||6}|2. = 1. Then from what we have shown above we have a(z) = G(z)~'b.

Since {‘Z;illw : 1 < i < r}is a Riesz basis for [:7||z with Riesz bounds A and B,
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(3) implies that ||a(z)]|2. < (l/A)HﬁHzH%,(Zd). Moreover,

2 2
”“””” o "Pﬁ"wi“'wg"z )

204
<NPuov | 1y1e] 22z
by Lemma 1. Since {1/3” p:1<4< 'r'} is a Riesz basis for f/“z with Riesz bounds

A and B a.e., “g”ac s < Bje(z)||2- a.e. by (2). Finally, lle(@) ||z < (1/4)2

a.e. by (1). This shows that the norm of G(z)™! is bounded above uniformly
a.e.
@#Lafeﬂm%wuw:@m%@wewusiSnwwz

(ar(2),- - ,ar(z))T, and let g, = Zb ¢1Hw’ where b(z) = G(z) la(z).

Now, let PVHm denote the orthogonal pro;ectlon of £2(Z%) onto V”m. Then,
Z laj(z)|* = Z l(fo)"rbj”x)P
j=1 =1

Zl PV,.szw’%“z! <BH v“mfllw

5],

52(Z"‘) e’

which holds since, being a Riesz basis of V”w with Riesz bounds A and B,
A T ~
{zbj“ m} . is a frame for Vjj; with bounds A and B. It is now easy to see
J=

that a; € L?(T?) for each j. Since the operator norm G(x)~! is bounded above
uniformly a.e., b; € L?(T?) for each j. Then g € U by Proposition 1. Since
f=g+(f—g), it is enough to show that f — g L V. This is tantamount to

showing that <f“wz/;l||m> = <g”$¢,”m>, z€ T4 1<1<r Now,

g]]m’wlnw ZZG m)’tja'] )

i=1 j==1
r

=Y a;(2)d,
j=1

= ai(@) = (fiutuye ).

For the uniqueness of this decomposition we argue as follows: Let f € L2(R?).
Suppose that f = u 4+ vt € U 4 VL. Then, for ae. £ € T4, there ex-
™

ist unique ay(z),---,ar(z) such that d, = Zai(x)qgmm since ), € VHz
i=1
A r A
and {¢>,-”z}' . is a Riesz basis of V||;. A calculation similar to the previous
i=
ones shows that a(z) = G(z)~'b(z), where a(z) = (a1(z), - ,a.(z))7,b(z) =
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. S T
g(f”z,wl”z), o e wrnm)) . This shows that the decomposition is unique.

We now give a formula for the angle between U and V (see [6, Equation

4.n)).

Lemma 2. If the assumptions of Theorem 1 are satisfied, then

-1
R(U,V) = R(V,U) = ess-inf “G(p(x)l/zG(a:)_lG\p(ac)l/Q” .
z€

Proof. We have R(U, V) = ess-inf R<0Hma V”w) by Proposition 2.10 of [4]. Now

z€Te
T
>_ i

i=1

T T
(b1,---,br)T be such that Z bﬂﬁi“z is the orthogonal projection of Z az’<l§i||z

2

let a = (a1,--+,a,)T € C"\ {0}. Then = (Gg(z)a,a)cr. Let b=

i=1 i=1

onto V”m. Then, for each | = 1,- - - ,r, the following should be satisfied:

[d T
<Z aiPijj; —Zbi¢i||z¢l||z> =0.

I

This leads us to:
Gy(z)b = G(z)a.
Hence
b= Gy(z) 'G(x)a.
A direct calculation shows that

r ~
> bithi
i=1

2

- (G@)0Ge(@) Glwa)_.

This shows that

N . G(z)a, Gy(z) 1G(z)a)c- 3
R<UH$’VHw) - aettltg\f{o} (< : )(G:E:B)a, a)c(r Jole ) ’

Notice that Gg(z) and Gy(z) are strictly positive-definite. In particular, they
are hermitian. Recall that G(z) is invertible. We now use a change of variables
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such that a = G(z)~'Gy(z)/?b. As a runs over C" \ {0}, so does b. We have

in
a€Cr\{0}

(<G(x>a, Gw)—la(x)%)%
(Ga(x)a,a)cr

_ sup (Ge(z)a, a)cr
accr\(0} {G(@)a, Gu () 1G(z)a)cr

(Go(2)G(z) ' Gy(x)'/?h, G(z) "Gy (z)/?b)c-
=| sup ’
beCr\{0} Il 1

= HG\P(x)l/QG(x)*_1G¢($)G(x)—law(z)l/2“—%

- ”G@(w)lﬂG(m)_lG\p(:c)1/2“—1.

Hence

-1
R(U,V) = esse—jirgf HGd)(ﬂv)l/?G(x)_le,(m)l/QH .
T

We have, by symmetry,

_1
R(V,U) = ess-inf ”G\Il(ib)mGw,m(w)_lGq)(m)l/2“ .
zEeTe

R(U,V) = R(V,U) since Gy 5(z) = G(z)*. §]

2.

3.
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