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MULTIPLE SCALE ANALYSIS OF A DELAYED PREDATOR
PREY MODEL WITHIN RANDOM ENVIRONMENT

TAPAN SAHA* AND MALAY BANDYOPADHYAY

ABSTRACT. We consider a delayed predator prey model. The local sta-
bility and Hopf bifurcation results are stated taking the time delay as a
control parameter. We apply multiple scale analysis to analyze the effects
of additive white noises near the Hopf bifurcation point at the positive
interior equilibrium state. The governing equations for the amplitude of
oscillations on a slow time scale are derived. We identify the process of
amplitude of oscillations and derive its transient properties. We show that
oscillations, which would decay in the deterministic system whenever time
delay lies below its critical value, persists for long time under the validity
of multiple scale analysis..
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1. Introduction

Predator-prey systerns are very important in the models of multi-species pop-
ulation dynamics and have been studied by many authors (see [2, 6, 11, 12,
20, 22, 23, 28] and references cited therein). Two dimensional deterministic
predator-prey models have only two basic patterns: either approach to an equi-
librium point or to a limit cycle. It is a well known fact that past history as
well as current environmental conditions have the ability to influence population
dynamics and such interactions has motivated the introduction of time delays
in population growth models. In most of the natural systems, population of one
species does not respond instantaneously to changes in the environment or the
interactions with other species of populations within their habitats. In recent
years a large number of models involving time delays have been developed and
analyzed using various mathematical techniques. It is commonly observed that
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the time delays have destabilizing effect on the dynamical behaviour and often
time delays are responsible for the population oscillations within deterministic
environment. Time delays of one type or another have been incorporated into
predator-prey models by many researchers [1, 3, 4, 5, 7, 8, 9, 16, 19, 24] and they
have observed various dynamical behaviours exhibited by the delay differential
equation (DDE) model systems. Solutions to DDE’s exhibit many interesting
properties, among them, existence of periodic solutions gives us opportunity to
explain the observed oscillatory behavior induced by a delay in time variable.

Major parts of the work in this direction are based on deterministic models
of differential equations. The deterministic approach has some limitations as it
is always difficult to predict the future dynamics of the model system accurately
knowing its state at an earlier time. The deterministic approach is based upon
the hypothesis that in case of large populations, stochastic deviations (or effect of
random environmental fluctuation) are small enough to be ignored. A stochastic
model provides a more realistic picture of an ecological system compared to its
deterministic counterpart. A major obstacle in the stochastic modelling of an
ecosystem is the lack of mathematical machinery available to analyze non-linear
multi-dimensional stochastic models.

In the presence of noise, DDEs are referred to as stochastic delay differential
equation (SDDE) and SDDE models have been studied by various researchers
in last few years (see {10, 15, 17, 18, 21, 26] and references cited therein). Well-
known deterministic DDE models are the starting point of SDDE models which
include demographic or environmental stochasticity by adding noise term either
in the parameters involved with the model system or directly to the growth
equations. The resulting stochastic models involve non-linear stochastic differ-
ential equations with delay parameters whose solutions pose great difficulties.
In particular, analytical tools and methods for such nonlinear equations are not
well developed. In most of the cases, different linearization techniques of non-
linear stochastic differential equations give rise to a set of deterministic moment
equations and the magnitude of second and higher order moments give us the
information about the stochastic stability of the model system under considera-
tion.

In this paper we consider a well-known delayed predator-prey model within
fluctuating environment, SDDE model is developed from DDE model by adding
white noise terms in growth equations of both prey and predator population. We
derive the threshold level of the delay parameter for which system undergoes a
Hopf bifurcation and small amplitude periodic solution exists around the coex-
isting equilibrium point. We apply multiple scale analysis as developed in [14]
to study the effects of additive white noises on the dynamical behavior of the
model system near the positive interior equilibrium point at Hopf frequency. We
assume the form of the periodic solution resulting from Hopf bifurcation around
the interior equilibrium point in such a way that the amplitude of oscillations
evolves stochastically on a slow time scale. We derive the governing equations
for the amplitude of oscillations on a slow time scale for the SDDE model and
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show that these governing equations are also coupled SDDEs in terms of small
delay parameter. The dynamics are sensitive to noise when the noise intensities
are small and balanced with the proximity of perturbation. In this case the os-
cillatory behaviour sustains for a long time near the positive interior equilibrium
state. We identify the process of amplitude of oscillations and show that the
process is a stationary Gaussian process whenever the time delay lies below its
critical value. Stochastic fluctuations govern the dynamics of the SDDE model
system whenever the noise intensities are very large compared to the proximity
of perturbation. The condition for the validity of multi-scale analysis with fixed
but very small values of noise intensities provides a parametric regime where the
oscillatory behavior persists for a long time.

The paper is organized as follows: In the next section we present the mathe-
matical model describing delayed predator prey interaction and there after briefly
discuss the local stability and Hopf bifurcation results by considering time delay
as bifurcation parameter. In section 3 we describe the standard multiple scale
analysis to obtain the periodic solution of DDE model system [13]. Section 4
consists of the applicability of multiple scale analysis in the presence of additive
white noises near the positive interior equilibrium state at Hopf frequency and
we establish the fact that the amplitude of oscillations evolves stochastically on
a slow time scale. We made an attempt to identify the nature of stochastic oscil-
lation for the amplitudes of oscillatory solution in section 5. The basic outcomes
of multiple scale analysis are mentioned in the concluding section.

2. The delayed model : Stability results

Classical two-dimensional predator-prey dynamics is governed by the follow-
ing system of nonlinear ordinary differential equations

dN;

—(It— = R(Nl)N1 — F(Nl, NQ)NQ (2.10,)
-(“%]Yi-z— = eF(Nl, N2)N2 - 5(N2)N2 (21b)

subject to the initial conditions Ny (0) = Nig > 0, N2(0) = Ngg > 0. Here Ny
and Ny denote the populations of prey and predator species at any instant of time
‘’. R(N,) is the density dependent specific growth rate of prey in the absence of
predator, §(Np) is the per capita decline rate of predator in the absence of prey.
The predator consumes the prey with functional response F(Ny, N2) and ‘e’
denotes the conversion rate of prey biomass into predator biomass and satisfies
the restriction ‘0 < e < 1’. In this paper we have considered Holling-type III
functional response, which depends on the density of prey population only. The
Holling type III function has proved to be relatively successful in describing the
feeding process of predator [20]. In case of Holling type III functional response,
the maximum uptake rate of predator and half saturation prey density will
be denoted by ‘p’ and ‘@’ respectively. In the present paper we will consider



1194 Tapan Saha and Malay Bandyopadhyay

the logistic form of growth function for prey in the absence of predator in the
following way

R(Ni) =r <1 - %) (2.2)

where ‘r’ is the intrinsic growth rate and ‘k’ is the environmental carrying ca-
pacity. We assume that the per capita decline rate of predator in the absence
of prey is density independent. Thus the dynamics of the model system are
governed by the following system of nonlinear ordinary differential equations

dN1 Nl pN12N2

ke ey T (RN I ok B 2.3

a 1( /c) 0+ N? (230)
dN;  epNZN,
V2 _ — mN. .
it~ g+nz (2.3b)

All the parameters r, k, p, 8, e, and m involved in the model system are positive.
In order to reduce the number of parameters, model system (2.3) can be non-
dimensionalized in the following way

dr Bz2y

E—a}(a— )—1+:c2 (2.4a)
dy _ Bzy
il i Rl (2.4b)

where a, 8, 1 and v are dimensionless parameters and ‘0 < 1 < #’ (for details
see [25]). In the above model system it has been assumed that the conversion of
prey biomass into the predator biomass is instantaneous but in reality this does
not happen. Now we assume that the contribution of consumed prey population
to the growth of predator population is not instantaneous rather it is mediated
by some discrete time lag 7, which is known as ‘gestation delay’ [18]. Under this
assumption we write the system of equations (2.4) as

dr Bz2y

pri r(la—z)— T72° (2.5q)
204

Ed_y— _ Bz (t T)y — Yy (25b)

dt  1+z2(t—r)
where ‘T’ denotes dimensionless gestation time delay. The delayed model system
(2.5) is subjected to the positive initial conditions z(f) = ¢(6) > 0, 6 € [-7,0],
where ¢ € C ([-7,0], Ry), and y(0) = yo > 0. Under this initial condition the
model system (2.5) satisfies the existence and uniqueness criterion [9]. At this
position we would like to mention that such a type of delayed prey-predator
model with gestation delay has been studied by several authors ({9, 16] and
references cited therein) and hence without going into the details of calculations
here, we will only mention the basic dynamical results for the convenience of the
readers. In absence of time delay (i.e., 7 = 0) non-negative equilibrium points
for the model system (2.5) are given by (i) Eo(0,0) (trivial equilibrium), (ii)
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E1(a, 0) (axial equilibrium) and (iii) E.(z*,y*) (positive interior equilibrium)

where B )
* B x __ Ml oa—z*
R A () (26)

The existence of most interesting equilibrium state E,, where both prey and
predator population coexist demands the following restrictions

B>y and 0<z" < 2.1

Simple calculation shows that in the absence of time delay, Ey is always a saddle
point which is unstable along the positive direction of z-axis. The equilibrium
state E; is locally asymptotically stable whenever E, does not exist, but the
existence of F, implies that F; is a saddle point which is unstable along the
positive direction of y-axis. The positive interior equilibrium E, will be locally
asymptotically stable if the following condition holds

*

2
a<at =20 with ¥< B <2y (2.8)

(27 - B1)
It can be easily shown that in this case E. is also a global attractor [25]. As
o passes through its critical value o, the non-degeneracy and transversality
conditions for Hopf bifurcation are satisfied. The existence of Hopf bifurcation
implies that the model system (2.5) exhibits small amplitude periodic solution
around F,. We explain this phenomena using the following lemma

Lemma 1. In the absence of time delay the model system (2.5) exhibits Hopf
T (o> 0)
27— Py '

In the presence of gestation time delay ‘7’ we don’t have any change in the
position of equilibrium states and hence Ey, E; and E, are also the equilibrium
points for the delayed system (2.5) (for details, see [16]). To study the local
stability of the interior equilibrium F,(z*,3*) we linearize the model system
(2.5) around E,(z*,y*) and this results in the following system of equations

bifurcation around E, whenever o crosses through o = o =

dz

i + by (2.9a)

d

3—% =cx(t - 71) (2.9b)

22y Bla)* 2612*y"
where a = a — b= — <0and c= ————-5 > 0. The
(2v - 51) 1+ (2+)? (14 (2%)?)?
characteristic equation corresponding to (2.9) is given by
G\, 1) =X ~a\—bce™ =0 (2.10)

The equilibrium E, is locally asymptotically stable if

sup [|¢(0) — |+ |yo — y*l] <é
<6<0
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which implies
tll’n&(l‘(t), y(t)) = (CE*, y*)

where (z(t),y(t)) is any solution of (2.5) subjected to the earlier initial condi-
tions. In the presence of time delay ‘7, stability of E, carries two notions : one
is absolute stability and the other corresponds to conditional stability. In case of
absolute stability, E, is asymptotically stable for all 7 > 0, but for conditional
stability, E, is asymptotically stable for ‘7’ in some finite interval. The first one
corresponds to the case that the real parts of characteristic roots are negative
for all 7 > 0 and the second one shows an existence of critical time delay 7
(smallest delay) such that for 0 < 7 < 79, the real parts of characteristic roots
are negative and for 7 > 7y there exists at least one root of (2.10) whose real
part is positive. We recall that for 7 = 0, E, is locally asymptotically stable
whenever (2.8) holds. We now investigate the nature of the roots of (2.10) which
depends on time delay ‘7’. Let for some value of ‘7’, A = iw, (w > 0 and real)
is a root of the characteristic equation (2.10). Then separating real imaginary
parts in G(iw, 7) = 0 we get

w? + becoswr = 0, (2.11)
aw — besinwt = 0. (2.12)

The above two equations can be combined as
wh +a%w? — b2 =0 (2.13)

The roots of the biquadratic equation (2.13) are given by

wi = E (—a2 +vat+ 4b2c2) . (2.14)

2
From (2.14) it follows that we have a unique positive root wy of (2.13), given by

wo = \/% (—a2 + Vet + 4b2c2) (2.15)

From equations (2.11) and (2.12) we have

sin(wor) = % >0, (2.16)
w2
cos(woT) = —b—g > 0. (2.17)
1 . [0wg _ . [awp T
Thus 7 = w—[arcsm (—Ec—) +2kn}, k=0,1,2,....and 0 < arcsm( b ) < 5

0
Consequently the smallest delay for which there is a purely imaginary root is
given by
1 . aw0>
=— — ). 2.18
0 % arcsm( T (2.18)
These results lead us to the following lemma.

Lemma 2. Suppose that the following conditions hold
(@) fi>v,0<2* <0,



Multiple Scale Analysis of a Delayed Predator Prey Model 1197

.. . 1 . awo
(i) a <0 withy < 1 < 2v. Then for 7 = 1, = ;};[arcsm (%) + 2k7r],

k=0,1,2,... the characteristic equation (2.10) have a unique pair of imaginary
roots tiwg, where wy is given by (2.15).

We will now study how the real parts of the roots of (2.10) changes as ‘7’
varies in a small neighbourhood of 7. Let A = u(7) 4+ iw(7) be a root of the
equation (2.10). Substituting A = u(7) + iw(r) in (2.10) and then separating
real and imaginary parts we get

u

Hi(u,w,7) = u? — au — w? — bee™" cos(wr) = 0,

Hy(u,w, T) = 2uw — aw + bee™®

Now it follows that H1(0,wp, Tx) = Ha(0,wp, 7k) = 0. Also we have |J|(g,wo7) >

Tsin(wr) = 0.

0H, 06H,
oy  Ow
0, where J = . Hence by implicit function theorem, H; (u, w, 7)
0H, 0H,
ou  Ow
=0 = Ha(u,w, ) defines u, w as a function of 7 in a neighborhood of (0, wg, 7%)

d
such that u(r;) = 0, w,, = wg and —u|T=Tk w=wo > 0. We now state the following

theorem regarding Hopf-bifurcation

Theorem 1. For the model system (2.5) suppose the following conditions are
satisfied

(o<z*<a,BL>7

(i) a < 0 with v < B1 < 2v. Then E, is asymptotically stable whenever
0 <7 < 19 and unstable whenever T > 19. The model system (2.5) undergoes a
Hopf bifurcation at E, for T = 1.

3. Standard multiple scale analysis

In the setting of Hopf bifurcation, a multiple scale approximation explicitly
employs the natural frequency (w = wy) of the oscillation associated with the
Hopf bifurcation [13]. Now wyp is related to 7 and is defined in lemma-2 with
k = 0. For characterization of the behaviour of the solutions near the bifurcation
point, we assume the form of the solution as

z(t,T) = A(T) coswt + B(T) sin wt, (3.1a)
y(t,T) = A1(T) coswt + B1(T) sinwt (3.1b)
where T = €2t, 7 = 19 + €7, , 0 < ¢ < 1 and Tp is a real quantity measuring
the deviation from bifurcation point. Here €2 is the parameter measuring the
proximity to the bifurcation. A(T) and B(T') are functions of a slow time T and

are treated as constant with respect to the fast oscillation with frequency w on
t time scale. A;(T) and B;(T') are given by

Ay(T) = } [WB(T) —aA(T)], (3.2)
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By(T) = % WA(T) + aB(T)] . (3.25)

The method treats z and y as a functions of two independent times ¢ and T'
with a perturbation expansion z(¢,T) ~ zo(t,T) + ez1(t,T) + ..., y(t,T) =
yo(t, T)+ey1(t, T)+..... The time derivatives z, y; are replaced by z;+€*zr and
vyt + €2yr. Proceeding with the perturbation expansion; the equations for higher
order contributions z;, y; for j > 0 are subjected to the solvability conditions,
which give governing equations for A(T) and B(T). These solvability conditions
are often in the form of conditions of orthogonality to the oscillatory modes
coswt and sinwt. The benefit of analyzing the governing equations is that they
allow us to continue the computation over the long time scale.

In our earlier section we have observed that the model system (2.5) undergoes
a Hopf bifurcation at E, for 7 = 7y (the smallest delay). This implies that a
small amplitude periodic orbit emerges for the model system (2.5) around E,
for 7 = 79 (the conditions of the theorem 1 must be satisfied). For 7 < 79, oscil-
lations decay over time and for 7 > 7y the oscillation grows exponentially. The
method of multiple scales can be applied for the full nonlinear system (2.5) with
stochastic perturbations, but in that case the envelope equations for the ampli-
tude of oscillations will be highly nonlinear and this is because of the nonlinearity
involved in (2.5). Because of this nonlinearity and also the feedback process, it
becomes very difficult to analyze the behavior of such governing equations. The
paucity of available techniques gives us the opportunity to apply the method of
multiple scales to the stochastic model system obtained from the deterministic
model system (2.5) in the vicinity of the critical delay parameter 7 = 7.

4. Multiple scale analysis of stochastic delay differential equations

The main assumption that leads us to extend the deterministic model sys-
tem to a stochastic one is that all prey-predator type interactions take place in
open environment and hence environmental fluctuation always have an effect on
the evolutionary behaviour of prey and predator populations. There are several
ways in which the effect of fluctuating environment can be incorporated in a de-
terministic model system to construct its stochastic counterpart. In the present
study, we assume that randomly fluctuating driving forces have effect on the
growth of prey and predator population at any instant of time ‘#’, so that the
deterministic model system (2.5) results in following SDDE model with ‘additive

noise’ terms
dz ( ) Bzy
— =z(la—z)—
dt 1+ z2

dy a?(t -
o e L ottt (.10

where &;(t) and &(t) are two independent Gaussian white noise characterized
by (€1(t)) = 0 = (2(1)) and (&()&;(t")) = 6i;6(t — t'), 4,5 = 1,2. Here 4 is the
Dirac-delta function, é;; is the Kronecker delta and (.) stands for the ensemble
average due to the effect of fluctuating environment. Linearizing SDDE model

+ o1& (t), (4.1a)
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system (4.1) around E, with help of the transformation z = z* + 2/, y = y* + ¢/
and then dropping ’ we get the following system of equations

dz

—d—g =qx + by + 01, (t), (4.2a)
Eid% == CIII(t — T) + szz(t) (42b)

where the expressions for a, b and ¢ are same as in section 2. At this position we
like to mention that, due to stochastic perturbations &;(t), ¢ = 1,2 the variables
z(t) and y(t) have zero mean values. Formally a white noise process is the
derivative of the Wiener process. The sample trajectories of a Wiener process
are continuous but nowhere differentiable and have infinite variations on any
finite interval [18]. The parameters ¢; and o involved with our model system
are intensities of the two independent Gaussian white noises £1(¢) and &2(%).
The above system is a system of two coupled linear stochastic delay differential
equations and can be regarded as delay differential equations (2.9) which are
acted on by two independent additive white noises.

To know the effect of noise near the bifurcation point over a long time, we
seek a periodic solution of which the amplitude varies stochastically on a slow
time scale T' = €?t. We have outlined the standard method of multiple scales in
the earlier section and assume the solution of (4.2) near the bifurcation point of
the form as in (3.1), but in this case A(T) and B(T') evolves stochastically. We
proceed in a similar fashion as in [14] and write the governing equations for the
amplitude of oscillations as follows

dA\ _( va AW A(T)
(dB)_.(wB >dT+(dWB(T) . (43)
Here 14 and 1 are called drift coefficients and (dWa(T)/dT = £4(T),
dWg(T)/dT = £g(T)) are two independent white noises. Our task is to de-
termine the drift coefficients (¢4, p) and a relation between the white noises

(€a(T),€p(T)) with the white noises (&1(t),£2(t)). We write the model system
(4.2) as

d(z)le(;)dHMQ(;g;g>dt+M3(%g) (4.4)

_[a b (00 (o1 O .
WhereMI*(O O),Mz— . 0>andM3—< 0 oy ).Byusmgthe

well known properties of Brownian motions [27], we may write the noise term in
(4.3) for our convenience on slow time scale T as

M3< dWi(t) ) _ Ms ( coswt dW11(T) + sinwt dWya(T) )

dWa(t) |~ € \ coswt dWa (T) + sinwt dWae(T) (4.5)

where W;’s (i,j = 1,2) are independent standard Brownian motions on slow
time scale T'.
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With the help of Ito’s formula and (3.1), we get from the equations (4.4) the
following set of coupled equations

i or o\ ( dA
ot 0A OB dt

dt + dt =
oy oy oy || 4B
ot dA OB dt

+wsinwt) + B(T)(w coswt — asinwt)

a(A(T) coswt + B(T) sinwt) — A(T)(a coswt
dt
( cA(T — 1) cosw(t — 7) + cB(T — 27) sinw(t — 7) )

+_1\_/I_3_ coswt dW11(T) + sinwt dWio(T) (4.6)
€ coswt dWoy (T) +sinwt dWao(T) /- )
We write AT ) ) AT)
AT - 1) = A(T) + € ( 2 ) , (4.7a)
—€e27) = B(T
B(T — é21) = B(T) + & (B(T : :2) B )) (4.7b)
— €2y = S
and since € is small we treat (A(T ¢ 7;) A(T)> and (B(T ¢ ;) B(T)>
€
as O(1). Also we have
cosw(t — 7) = coswt coswTy — eQw'rp cos wt sin wp
+ sinwt sinwrg + 2wy sinwt coswry + O(e?), (4.8a)
sinw(t — 7) = sinwt coswty — engp sin wt sin wTy
— coswtsinwry — e2wTy, cos wt cos wry + O(e?). (4.8b)

With the help of (4.7), (4.8), (2.15) and (2.16) we note that O(1) terms get
cancelled in (4.6). We neglect O(e*) terms to obtain the governing equations
for the amplitude of oscillations and on comparison we derive from (4.6) the
following equations

Ya(t) coswt +Pp(t)sinwt =0, (4.9q)
—(acoswt +wsinwt)ys + (wcoswt — asinwt)yp =
bewTy (sinwt cos wrg — coswt sinwy) A(T) — bewTp(sinwi sin wro+

— &) — A(T
cos wt cos wrg)B(T) + be <A(T ‘ ;) ( )> (sinwt sinwtp + coswt coswy)
B(T — é1) - B(T
+bc ( (T—e ;) ( )> (sinwt coswTy — cos wt sinwTy), (4.9b)

coswt AW4(T) + sinwt dWg(T) = %

(coswt dW11(T) + sinwt dW1o(T))
(4.10a)

~(acoswt +wsinwt) dW4(T) + (wcoswt — asinwt) dWp(T) =
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b—:l (coswt dWar(T) + sinwt dWas(T)) . (4.108)

We now use the method of multiple scales, we project the equations for A’(T")
and B'(T) onto coswt and sinwt, while treating functions of T' as independent
of ¢ (orthogonality condition). Thus the governing equations for the amplitude
of oscillations on slow time scale T are

(2)-+( 8 )era( 283

°7)
27)
R( %3% ) TR ( %z; ) (4.11)

where P, @, R and R; are (2 x 2) matrices given by

) dT+

WPyt = awT, — = °
PT 2 PT 2 T2 2
P= ¢ 0 ¢ )e=| & 4
_(MTP+E5 w'r,,+g§ 3 a2
a b
2\ 2 » T g b 0
w w

It is clear from (4.11) that the governing equations for the amplitude of oscil-
lations are linear stochastic delay differential equations with small delay €27 = 7.
In absence of noise (4.11) results in the following system of differential equations

(gg)=P<A)dT+Q<Ag zg)dT. (4.12)

The characteristic equation corresponding to (4.12) is

2 a ~Xe?r 2 w —Xé?r 2 _
()\—w'rp—-;;(l—e ) +(awp—§(1—e )) =0 @)
Since we have 0 < € < 1, the roots of (4.13) are

1
(@ + (1~ an)?)

{w’rp Liwrp(wPno —a+ar)} + O(F).  (4.14)

The roots given in (4.14) will have negative real parts if 7, < 0 which implies
T < T0-

5. Transient properties of the process (A(T), B(T))”

In this section we discuss the transient properties of the process (A(T'), B(T'))T
whose governing equations on slow time scale are given by (4.11). There are two
ways to characterize the transient properties of the process (A(T), B(T))T. In
the first case one can derive the Fokker Planck equation corresponding to the
SDDE (4.11). But the usual Fokker Planck equation approach can not be ap-
plied directly to a stochastic delay differential equation and we need a small
delay expansion [10]. Only then it is possible to characterize the stationary
properties of the process (A(T), B(T))T. In the other case, one can directly
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derive the moment equations of the process (A(T), B(T))T from (4.11) and can
characterize the stationary properties of the process (A(T), B(T))T. Here we
will derive the moment equations of the process (A(T), B(T))T. The behaviour
of the first and second moments of the process (A(T), B(T))T are sufficient for
the determination of transient properties of the process (A(T), B(T))T and we
need not derive equations for higher moments.

Let ma(T) = E(A(T)) and mp(T) = E(B(T)). Then from (4.11) we have
the following set of equations for the first moments :

dma
ar —F

— ( ma >+Q( m“(g i ) (5.1)
dmz mp mp(T —7)

dT

From (4.13), it follows that whenever 7 < 79, ma(T) and mg(T) approach
zero as T increases. To derive the equations for the second moments we use
Ito differential rule and the notations k4(T,S) = E{A(T)A(S)}, ks(T,S) =
E{B(T)B(S)} and kap(T,S) = E{A(T)B(S)}. We then have the following set
of equations for the second moments :

k
(52)
%ET_) — 201k (T, T)= 203k 45(T, T)—263k a5 (T, T—F)—204kp (T, T—7) +A2
(5.3)
Ei’m%g_’f_) = —0k (T, T) + ka5 (T, T) + 0k p(T, T) — O3k A(T,T ~ 7)

—204]ﬂAB(T,T—“7:) —I—ggk‘B(T,T—?) (5.4)
where 6y, 0o, 03, 84 and A? are given by

9 a _ w
0 =w 7',,—}—;2—, 02—aw'rp—6—2,

w a 1
=@ 04 = 2 A% = 12 (03(a® +w?) + adb?).

The equilibrium state is given by

03

A2

ky =kp=—775—
2 )
2wty

kyg =0. (5.5)
The characteristic equation corresponding to the linearized version of the system
of equations for the second moments around the steady state given by (5.5) is
equivalent to (4.13). Thus whenever 7 < 79, the second moments approaches
to the equilibrium state given by (5.5). This shows that whenever T < 79, the
process (A(T), B(T))T approaches its stationary realizations at a rate on slow
time scale T. The result (5.5) suggests that whenever 7 < 19, A(T) and B(T)
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are two independent stationary Gaussian processes each with mean zero and
A2

variance — .
2wl

6. Conclusion

To analyze the effects of additive white noise in a delayed predator prey model
we apply multiple scale analysis as developed by [14] near the Hopf bifurcation
point around the positive interior equilibrium state F,. In this method we derive
the governing equations for the amplitude of oscillations on a slow time scale 7.
This analysis helps us to discuss the behaviour of stochastic and deterministic
effects seperately for the model system near F,. In the absence of noise when
time delay lies below its critical value, the oscillations decay exponentially but
after stochastic perturbations the combined effect of noise and delay sustain
these oscillations. The periodic solution near E, at Hopf frequency serves as a
carrier whose amplitude evolves stochastically. The amplitude of oscillations are
identified as a stationary Gaussian process whenever time delay lies below its
critical value. The variance of the steady state of the amplitude of oscillations
depends on the noise intensities as well as also on the perturbing delay parameter.
The variance increases if we increase the noise intensities and if we approach the
perturbing delay parameter towards the zero value. This shows that the validity
of the method of multiple scale %nalysis that we adopted here depends on two

1
conditions : 0 < e € 1 and ~3 < 1 where A? = 12 (cr‘lrl(a2 +w?) 4+ 0%172).

w2,
The first condition is trivial and fZ(’)r the second we need ‘c;’, i = 1,2 must be
small, of the order of € and the value of ‘A’ should not exceed the product of the
square root of the deviation of delay from its critical value and the frequency of
oscillations. The method does not hold whenever the noise intensities are large
and the stochastic fluctuations gov2ern the dynamics. Now if we fix the noise

intensities ‘c; = O(¢)’, then o < 1 defines a parametric regime in ab-
P

parameter space where the oscillatory behavior persists for a long time around
the coexisting equilibrium point. Finally we would like to mention that the
method we have followed here can be applied to other two dimensional SDDE
models of ecological systems.
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