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CONTROLLABILITY IN DIFFERENTIAL INCLUSIONS

KYUNG-EUNG KIM AND YOUNG-KYUN YANG

ABSTRACT. We prove a theorem that there exists at least a solution reach-
ing the prescribed target in autonomous differential inclusion. A weak
invariance theorem is cbtained from this theorem as its corollary. To de-
duce the conclusion, we assume that the target satisfies inward pointing
condition. This condition will be given by proximal normal cone.
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1. Introduction

We consider the following autonomous differential inclusion:

&(t) € F(z(t)) ae. te|S,T)

z(S) € Cg (1)

iIJ(T) €Cr
the data for which comprise an interval

[S,TICR
a set-valued function (also called multifunction)
F:R*"~R"
and two set
CscR*, CrCcR"

We would like to find a solution to the above system, i.e., an absolutely con-
tinuous function satisfying the differential inclusion #(t) € F(z(t)) and steering
the initial state z(S) € Cs to the target z(T') € Cp. This problem is called the
controllability in optimal control. We will prove the existence of solutions to
this problem and a weak invariance theorem as its corollary. Invariance theorem
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concern solutions to a differential inclusion, that satisfy a specified constraint.
Theorem giving conditions for existence of at least one solution satisfying the
constraint are called weak invariance theorems or viability theorems. Those
asserting that all solutions satisfy the constraint are called strong invariance
theorems. The invariance theorems play an important role in viscosity solution
theory of optimal control (see [1] and [6]). In this article we will focus only on
controllability and weak invariance.

2. Some examples
We give some examples in which there exists at least a solution to (1).

Example 1. Fix Cr C R™. We define Fi(z) = —F(z) and
Cs = {%(T) : ¥ is a solution to (2)}
where

i(t) € F(E(t) ae te[S,T] (2)
Z(8) e Cr

Set z(t) = Z(T + S — t). Then since
i(t) = —H(T+ S —t)
and
o(T) =1iIg
z is a solution to (1). In other words, for all zg € Cg, there exists a solution to

(1) satisfying z(S) = zs.

Example 2. Fix Cs and Cp C R™. Assume that

Cr—Cs
T-5

If we set for some x5 € Cg and 7 € Cp

C F(z) Vz

o(t) = g (t— ) + s,
then
i(t) = ;_;@—aepu@)
:E(S) c Cs

.’B(T) €Cr

In other words, for all z(S) € Cs and z(T) € Cr, there exists a solution to (1)
satisfying (S) = zg and z(T) = z7.
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Example 3. (Completely controllability) Consider the following linear con-
trolled system:

&(t) = Az(t) + Bu(t) a.e. t€ [S,T]
z(S) € Cs 3)
:IZ(T) eCr

where A € R™*™ B € R"*¥ and u : [S,T] — RF is measurable. It is well
known that the above system is equivalent to (1) if we set

F(z) = {Az + Bu:u € R¥}
Assume that Kalman’s rank condition

rank(B,AB, .., A""'B) =n
holds. Then, for any S < T and (zg,zT) € Cg x Cr, there exist a solution to
(1). See [5] for detail.

Example 4. Some results for weak invariance for time-varying(nonautonomous)
differential inclusion are found in [2] and [3].

3. Existence of solutions reaching target

We assume that
(I) Cs and Cr are closed in R"

(I) GrF := {(z,y) e R" x R™: y € F(z)} is closed
(IIT) F(z) is a nonempty convex set for each z € R™

(IV) there exists K > 0 such that for all z € R®

sup [jv]| < K
vEF(x)

(V) there exists § > 0 satisfying that, for every 2 € Cr such that N is
nonempty,

in £-v< -4, VEeNS
vénﬁ&)g v< € € Ng,.(z)

(this condition is called inward pointing condition)

(VI) for every z € Cg

VT = 8) > d(z,Cr)

See [4] and [6] for the definition and the properties of proximal normal cone
NE(z) for some closed set D.
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Theorem 3.1. Under the assumptions (I)-(VI), given any zs € Cg, there
ezists an absolutely continuous function z satisfying z(S) = zgand the following
differential inclusion system:

#(t) € F(z(t)) ae te[S,T]
:L'(S) € Cg
.’IJ(T) c CT

Proof. Fix an integer m > 0. Let {to = S,t7",t5, ....,t7» = T} be an uniform
partition of [S,T]. Set hpy, = (T — S)/m.

We define sequences {z7*}™,, {v}™7! and {y7*}7%," recursively as follows.
Take
Ty = LS.
Since Cr is closed, we can choose, for some ¢ € {0,1,....,m — 1}, y* € Cr to
satisfy
d(zi", Cr) = |27 — 47|
and

o~y € NE ()
Under the assumption (V), there exists v]* € F(y*) such that
(@ — ") - vi" < 6.

Finally, set
Ty =T+ hmvp
Now define, for: =0,1,.....,m— 1 and
2ty =ai + (-t forall te [t ]
Note that |[v]*| < K by assumption (IV) and
2™(T) = 2™(th) = 2oy + (T —t_y )iy

Since yi* € C'r, we have

d? (27", Cr)

IA

2
(lar =2l + 25 - vl

2
= (hmlel + lof - 91)
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and
@@, Cr) < (|2 — oy, |)?
< ey -y P e -2 P4 22 - yy) - (@ - ay)
= d* (2, Or) + 2ol |2 + 2h (22 — 4 y) - 04
< 2@l Cr) + k2 K? ~ 2hy,6
< (@(e]a On) + WEK? = 2hnd) + B2, K? = 2
= d(zy, Cr) + 2h2, K2 — 4hp0)
Therefore
2z, Cr) < P, 0r)+ (i — Dh2K2 — 2(i — 1)hmd)
2 . 9
< (Bl + 108 = 1)+ (= Dl (KA — 26)
2
= (th +d(zs, CT)) + (i = 1)hyn (K ?hy — 26)
and
(@ _1,Cr) < (hmK +d(zs,C1))% + (M — 2)h (K2 hm — 25)
T-8 2
< (TK +/28(T — S))

+(m—2)T"S <K2T”S —25)
m m

Taking the limiting process,

lim d*(z7_,,Cr) =0

m—0

So we can deduce from the fact that [v/*| < K and t7_; — T
hm d?(z™(T), Cr)

= 1im d*(af, + (T~ t_y)v_y,Cr)

m—0o0

= lim d*(z7_;,Cr)

M OO

=0
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Now when t € [t]*,t]%,], we have
[&7™(t) = "] < K

This inequality is valid for all ¢ € S, T)]. Since

t
2™ (t) = 2™(S) +/ 2™ (T)dr,
s
we have

t
IWwISVWW+AVWﬂW

< Jzs| + K(T - S)
and for all t and s in [S, T

|ﬂw-ﬁ@m/uWﬂwﬁmvﬂ

Thus the sequence {z™}>_; are uniformly bounded and equicontinuous. By
the theorem of Arzela-Ascoli, the sequence {z™} has an uniformly convergent
subsequence. Furthermore since |2™(t)| < K, by the theorem of Dunford-Pettis
we have by passing to further subsequence if necessary,

3™ v weakly in L' for some v
Consider the arc .
z(t) = zs +/ v(T)dT
By the definition of weak convergence, WeShaNe
2™ — z uniformly.
Therefore

d(x(T),Cr) = lim d*(z™T),Cr) =0

m—oo
Since Ct is closed,
z (T) € Cr
‘We have proved the existence of arc reaching the target Cr.
It remains to check that 2 is a F'—trajectory, i.e .,

#(t) € F(2(t)) ae. t€[S,T)

We can see this in the proof of 2D.5 of [4]. But for the readers’ convenience, we
reproduce the proof. Define

H(z,p) =sup{p-v:v € F(z)}
Fix p € L*([S, T]; R™). It follows from Corollary 2D.2 of [4]
P() - m(t) < H(zm(t),p(8)) ace. t€[S,T]
Note that H is upper semicontinuous with repect to z and
H(zm(t), p(t)) < K|p(t)]-
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We apply Fatou’s Lemma to obtain

T T
/ p(t) - 2(t)dt = limsup / p(t) « 2 (t)dt
)

k—oo

IA

lim sup / H(zm(t ))dt

k—00

< /hmsupH(zm(t),P(t))

k—oo

/'H )t @)

Pick any ¢ € Q™. Let r be any Lebesgue point for the integrable functions 2 and
H(z(-),q). For any small h > 0, let

IA

p(t)=% for t € [, 7+ hl.

Then (4) gives
1 T+h
[ @ a0 - G0, <o
In the limit as h — 0% we get
g-z(r) — H(z(1),q) <0.
This inequality holds for all 7 outside a Lebesgue null set which may depend on
g . But since the set Q" is countable, the union of all these null set remains
negligible. Thus
q-#(t) < H(z(t),q) Yg€Q", ae tel[ST]
Since both sides of this inequality are continuous as functions of ¢,
p-2(t) < H(z(t),p) Vp € R", a.e. te€[ST]
This implies
2(t) € F(2(t)) ae. te[S,T]
O

When Cg = Cr = C, we obtain a weak invariance theorem as a corollary.

Corollary 3.2. Assume that

<0 VEEN,
,Bin € ¢ € NG (z).

Then for any zg € C there exists a solution to:
Z(t) € F(z(t)) ae te[ST],
z(S) = zsg,
z(t) € C Vt € [S,T].
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Proof. First, in Theorem ??, if we set Cs = Cr = C and § = 0, then there
exists a solution z to

i(t) € F(z(t)) a.e. t€[S,T),

z(S) =xz5 € C,

z(T) e C.

Next, we must have
z(t) € C forall te (S,T)
For this, in the proof of the theorem, we set § =0 and Cs = Cp = C. Then

P(2(t),C) = lim d(zm(t),C) = lim d(ap_;,C) =0
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