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BLIND IDENTIFICATION USING BILINEAR PAIRINGS FOR
SMART CARDS

YOUNG WHAN LEE

ABSTRACT. A. Saxena et al. first proposed a two-flow blind identification
protocol in 2005. But it has a weakness of the active-intruder attack and
uses the pairing operation that causes slow implementation in smart cards.
In this paper, we give a method of the active-intruder attack on their
identification scheme and propose a new zero-knowledge blind identification
protocol for smart cards. Our protocol consists of only two message flows
and does not rely on any underlying signature or encryption scheme. The
prover using computationally limited devices such as smart cards has no
need of computing the bilinear pairings. It needs only for the verifier.
Our protocol is secure assuming the hardness of the Discrete-Logarithm
Problem in bilinear groups.
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1. Introduction

An identification protocol is an interactive protocol between the prover and
verifier, in which the prover tries to identify itself to the verifier by demonstrating
knowledge of a certain key associated with the prover. In the secret key setting,
the key is shared between prover and the verifier, whereas in the public key
setting, the key is the private key of the prover.

In this paper we are interested in the public key setting. There are many
identification protocols using zero-knowledge proofs [2, 6, 7, 8]. A. Saxena et
al.[9] introduce the notion of bounded-prover zero-knowledge proofs which re-
quire only two rounds and can be considered perfectly zero-knowledge under
certain interactivity assumptions. Their protocol uses bilinear pairings and can
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be encapsulated in smart cards disguised for Elliptic Curve cryptography (ECC).
But, unfortunately pairing implementation attempts in limited devices such as
smart cards reveal that code may be slow, resource consuming and tricky to pro-
gram, although pairing is a cubic-time implementation. Also their scheme has a
weakness of the active-intruder attack. To improve these weaknesses, we propose
a new zero-knowledge blind identification protocol for smart cards. The bilinear
pairings be used only to verifier but not prover in our protocols of identification
and signature. And we prove the protocol is secure assuming the hardness of
the Discrete-Logarithm Problem in bilinear groups.

The organization of the paper is as follows. In Section 2, we present the
preliminaries of bilinear parings and background, and give a method of the active
intruder attack on Saxena et al.’s scheme. In Section 3 we propose our new two-
round blind identification and then in Section 4 we prove the security of the
proposed protocol. In Section 5 we deal with other extensions such as hidden
signatures and anonymous seller credit payment. Finally, a conclusion is given
in Section 6.

2. Bilinear pairings and background
2.1. Bilinear Pairings

The cryptology using pairings is based on the existence of efficiently com-
putable non-degenerate bilinear maps (or pairings) which can be abstractly de-
scribed as follows;

Let G1 be an additive cyclic group of the prime order ¢ and G2 be the multi-
plicative cyclic group of the same order. Practically we think of G; as a group of
points on an elliptical curve on Zj, and G2 as a subgroup of the multiplicative
group of a finite field Z7, for some k € Z;. Let P be a generator of G; . A map
é: Gy X G1 — Gy is called bilinear pairing if € satisfies the following properties:

(1) Bilinearity : For all P,Q € G; and a,b € Z7, é(aP,bQ) = é(P, Q)*®

(2) No-degeneracy : P #0= é(P,P)#1

(3) Computability : There is an efficient algorithm to compute é(P, Q) for
all P,Q € Gy

Note that modified Weil pairing and Tate pairing are examples of bilinear
pairings [3, 4]. Without going into the details of generating suitable curves, we
may assume that ¢ &~ 217! so that the fastest algorithms for computing discrete
logarithms in Gy take about 2%° iterations [9]. We define the following problems
in G 1

(1) Discrete-Logarithm Problem (DLP) : Given P,Q € G , find an integer
a € Z; such that aP = Q .

(2) Diffie-Hellman Problem (DHP) : Given P,zP,rzP € G; for unknowns
z,TE Z; , compute 7P € Gj.

2.2. Background
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In this section, we introduce a two-round identification scheme using a public
key cryptosystem, which proposed by A. Saxena, B. Soh and S. Priymak [9].
Assume that Alice and Bob are two users and Alice wants to identify herself
to Bob. We only consider one-way identification and ignore the case of Bob
identifying himself to Alice. A round of a protocol involves the exchange of one
message. A sequence of two synchronous message transmissions constitutes two
separate rounds, while any number of asynchronous messages is part of the same
round. A single message passing is a one-round protocol.

1)

(2)

The SSP (A. Saxena, B. Soh and S. Priymak [9]) Scheme:
(1) B chooses r € Z, uniformly at random and compute R = rY and
U =r2P. Then B sends < R,U > to A.

1
(2) After receiving < R,U >, A computes ER' A rejects and stops if

é(i—R, -i—R) # é(U, P) ; otherwise A generates @ € G and computes
Z =V 4+ zQ. And then A sends < Z,Q > to B.

(3) After receiving < Z,Q >, B verifies < Z,Q > ;

If é(Z—rP,P)=¢(Q,Y) , then B accepts : otherwise, B rejects.
Active-intruder Attack on SSP Scheme:

Informally, an active adversary is the one who alters, injects, drops
and/or diverts messages between the prover and the verifier. Note that
there are three approaches to handling this definitional issue [1, 5, 10].
D. R. Stinson, J. Wu defined a successful active-intruder attack as follow:
In an active-intruder attack, the adversary is successful if the (honest)
verifier accepts in a session after the adversary becomes active in the
same session [10]. We give an example of the active-intruder attack on
SSP scheme as follow:

We use simple figures and notations to illustrate the SSP protocol and
corresponding active-intruder attacks on it. Let 7 be a random number
chosen by B, X a random number chosen by A, and O any attacker. All
computations take place in a relevant group.

SSP Scheme: z is secret key and z P is public key.

A<R=rzPU=r*P>p
G
A<Z=1R+1Q.Q>p
Bl i

1_1
A verifies that é(;R, ER) = é(U, P) and accepts. Also B verifies that
and accepts.

Attack : The active-intruder attack is possible.
A<2R=2rgPAU=4r’P>()<R=rgP,U=r*P> R

A<Z=12R+2Q.0><3%,3Q> B
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A verifies that

1.1
é (523, 523) = &(2rP,2rP) = 8(P, P)*"" = é(4r*P, P) = ¢(4U, P)

and accepts. B verifies that
1 1 e 1
and accepts.

2.3. Our contribution

In this paper, we propose a new 2-flow identification protocol for smart cards
using a public key cryptosystem. Our proposed protocol has several advantages.

(1) For a computationally limited device such as a smart card, the prover
in our protocol does not use bilinear pairings and only the verifier uses
them.

(2) Our protocol is secure assuming only the hardness of the Discrete Log-
arithm Problem in bilinear groups. Note that the SSP scheme needs
another assumption such as the hardness of the DHP, EDHP or LDHP
[9].

(3) The SSP scheme has a weakness of the active-intruder attack, but our
scheme does not.

3. Our new two-round blind identification
3.1. Initial setup

We assume the existence of a trusted authority, denoted by TA, who will issue
certificates for all potential participants in the scheme. The initial setup for our
scheme as follows:

Protocol 3.1: Identification scheme setup

Input: Security parameter k € ZF .

(1) The TA generates a prime g, two groups G'1, G of order q and an ad-
missible bilinear map é : Gy x G2 — Ga.

(2) The TA chooses a random generator P € (1, a random s € Z;; and sets
Ppup =8P .

(3) The TA publishes a hash function h : G — {0, 1}*.

(4) The TA computes C such that C' = é(P, P), and publishes the system
parameters < g, G1, G2, P, Ppys, €,C, h >,

(5) Each potential prover A chooses a private key z uniformly from Z; at
random, computes zP and registers P as A’s public key.
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3.2. Protocol description

In a session of the scheme, the prover A tries to convince the verifier B of A’s
identity. B accepts only if A respond to B’s challenge in an appropriate way.
The steps in a session of our scheme as follows:

Protocol 3.2: A 2-flow identification scheme

(1) The verifier B chooses r € Z; uniformly at random, and computes
V = é(rzP,aP) = C™ , W = é(rP,xP) = C" and h(V). Then B
sends < h(V), W > to the prover A.

(2) After receiving < h(V), W >, A rejects and stops if h(V') # h(W?), or
W ¢ Gg; otherwise A chooses z € Zg, and compute X = W=C="* and
T = W% . Then A sends < X,T > to B.

(3) After receiving < X,T >, B accepts if X = C"T 7 : otherwise B rejects.

3.3. Completeness

It is straightforward to prove that Protocol 3.2 is complete. Suppose A and
B are both honest. After receiving the challenge < A(V), W >, A checks to see

if (V) = h(W=). Since V = cre’ = (C™)* = W?*, A accepts and sends the
response < X, T > to B. Then B checks to see if X = C'T+. Since
X = W%cwaz - C’r(crmaz)% - CTT%

B also accepts.

4. Security of the proposed protocol
In this section, we prove that the above protocol is perfect zero-knowledge.
4.1. Soundness

Assuming an honest verifier, we must show that a dishonest prover cannot
succeed except with a negligible probability. Given zP, h(V), W the task of a
dishonest prover is to compute a pair < X, T > such that X = CTT+. We show
that this is an instance of the DLP in Theorem 4.1. The knowledge of W and
h(V) does not give a dishonest prover any additional advantage in solving this
DLP instance because deciding if h(V) = h(W?) is an instance of the DLP as
Theorem 4.3. Thus, the proof is sound from a verifier’s view as long as the DLP
is intractable.

Theorem 1. Assume that the DLP is hard. Then it is hard for the dishonest
prover to construct a pair < X, T > with X = CTTr.
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Proof. The dishonest knows
P, 2P, C® = é(P,zP), C* = é(zP,zP),W =C™ and h(V)

and he does not know r and z in Z;. Thus we may assume that
X = (C'rz);lr(crz)azlzz and T = (Crz)a:'zz

for 2/,z € Z:. If X = C"T=, then crear+ee®s Lot fp: Gy x G1 — Gy be the
one-to-one mapping given by fp(Q) = é(Q, P) [4]. Then we have

C™ =C"™ & é(reP, P) = é(rz'P, P)
& fp(rzP) = fp(ra'P) & roP = rz'P.

Let R =7P and Q = rxP. Thus we know that to construct a pair < X,T >
with X = C™T+ for unknowns r,z € Zy is to construct z’ satisfying 2'R = Q
for the known R, Q € G1. This is the Discrete-Logarithm Problem and thus it
is hard for a dishonest prover to construct < X,T > with X = CrT=. O

4.2. Honest verifier zero-knowledge

The transcript consists of the messages exchanged between the two parties.
The definition of perfect zero-knowledge can be found in [3]. In Theorem 4.2,
we construct a simulator that can generate an accepting transcript

{r(V), W, X, T}

without interaction with a prover and then show that the simulated and real
distributions are identical. Thus our protocol is perfect zero-knowledge for an
honest verifier.

Theorem 2. Protocol 3.2 is perfect zero-knowledge for an honest verifier.

Proof. The set  of real transcripts obtained by a prover and an honest verifier
consists of all transcripts & having the following form:

S =< h(V), W, X,T >=< h(C™"),C",CT+"°2, 72" >
where r is chosen by the verifier uniformly at random from Z7 and also z is

chosen by the prover uniformly at random from Z7. The set & of simulated

transcripts can be constructed by the verifier as follows;
The verifier chooses r and o uniformly at random from Z7 and computes the

simulated transcript § =< h(C’mg), Ccre, 0Tt CT™ > using

h(é(rz P, zP)),é&(rP,zP),é((r + a)P, P)
and é(ra.P, P). Since the random numbers 7, z and « in Z; have identical prob-
ability distributions and o = 2*(z732), & and S have identical probability
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distributions. Therefore the protocol is perfect zero-knowledge for an honest
verifier. O

4.3. Dishonest Verifier Zero-knowledge

A dishonest verifier will generate < V,W > with A(V) = h(W?*) non uni-
formly. In order words, a dishonest verifier will not know 7 corresponding to
V. To prove Zero-knowledge in this case, it is enough to prove that the prob-
ability of a dishonest verifier succeeding is the probability solving the Discrete
Logarithm Problem.

Theorem 3. Assume that the DLP is hard and h(-) is random oracle. Then
it is hard for a dishonest verifier to construct W such that h(V) = h(W?®) for
given V, P,z P.

Proozf. To cgnstruct W, a dishonest verifier must construct C'%* such that
CT® = "™ for unknownsr,z € Z;. Let fyp : G1 X Gy — G2 be the one-to-one
mapping given by fp(Q) = é(Q, P) [4]. Then we have

C""’ﬁ _ Crg;” o é(r’sz, P) _ é(mc2P, P)
& fop(r'zP) = fup(raP) & r'zP = raP.
Thus to construct W is equivalent that given P, 2P = @, rzP = R and unknowns

r,x € Z* adishonest verifier compute 7’ such that r'QQ = R. This is the Discrete-
Logarithm Problem and so it is hard. O

4.4. Passive adversary blindness

An inherent property of our protocol is passive adversary blindness which
informally implies that no polynomially bounded adversary has a non-negligible
advantage in deciding the honesty of the participants in the protocol. Assuming
that the DLP is intractable, it is impossible for a passive adversary to decide
the honesty of the verifier: given P,z P, C?, C””Q, W, h(V) , deciding if V = W2
is an instance of the DLP. Similarly it is impossible for a passive adversary to
decide the honesty of the prover: given P,zP,C?, Cm2, W, h(V), X, T, deciding
if X = C™T'+ is an instance of the DLP.

4.5. Knowledge extractor

Let I; = { <XT>|X= C"T%}. Then a prover ID essentially proves
knowledge of the witness < X, T >& Ly using the shared string

< P,zP,C%,C% ,C™ h(C™") > .
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Clearly L; € NP. Assume that a dishonest prover ID* is able to make any
verifier accept. That is, given < P,z P, C?, cs* cre, h(C”‘z) >, ID* can always

output a pair < X', 7" > such that X' = C™T'" . By simulating the honest
verifier itself, ID* can obtain < X’,T' >, the witness that < X', T' >€ L, .
Thus our protocol is a ”proof of knowledge”

5. Other Extensions

In this section we provide extensions of our scheme. The private keys z; € Z ;
can either be generated by the user or by a trusted authority. The public key z;P
are assumed to be certified in the former case. A. Saxena et al. [9] introduced
how to use their scheme for smart cards as follows;

The private key for each smart card is encapsulated in a tamper proof chip.
Signing access to this key is given via some mechanism like a PIN number.
The corresponding public key is also present in the smart card along with a
certificate. Smart cards may be purchased from a (reputed) third party and
must be registered with the relevant authority (like a bank) before they can be
used. To register a smart card, the authority simple provide a certificate.

In our scheme smart cards do not need to have the device of the bilinear
pairing.

5.1 Hidden signatures

When user A identifies to the server B, A can also send plain text message
along with hidden signature such that B can extract the signature.

Protocol 5.1 : Hidden signature scheme

(1) Initialization : B asks A to identify itself by sending the challenge <
h(V),W > in the first step of Protocol 3.2.

(2) Signing : Let M € G; be the message to be signed and H(M) = w,
where H : G1 — Z;‘ is a hash function. A computes W* and check
that h(V) = h(W?). And then A choose z € Z; randomly and compute
X = W¥C#=® and T = W%, The pair << X,T >, M > is sent to
B.

(3) Verification : After receiving << X, T >, M >, B extracts the signature
S = C"T+. The verification condition is X = S¥.

5.2. Anonymous seller credit payments

We propose a secure blind identification and hidden signature scheme. Thus,
as A. Saxena et al. proposed the secure of a anonymous seller credit payments,
our scheme can also applies to them without the active-intruder attack as in the
before.
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6. Conclusion

In this paper, we proposed a new zero-knowledge blind identification protocol

for smart cards. Only based on the DLP assumption, it is secure in random
oracle model. Also in our protocol the only verifier uses bilinear pairings but
not the prover. Thus smart cards with our scheme need not have devices for
bilinear pairings. Under the methods of security proof given by Stinson and
Wu [10], our protocol is secure against active-intruder attacks but Saxena et
al.’scheme [9] has a weakness of them.

10.
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