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OUTLIER DETECTION BASED ON A CHANGE OF
LIKELIHOOD

MYUNG GEUN KIM

ABSTRACT. A general method of detecting outliers based on a change of
likelthood by using the influence function is suggested. It can be applied
to all kinds of distributions that are specified by parameters. For the
multivariate normal case, specific computations are made to get the corre-
sponding conditional influence function. A numerical example is provided
for illustration.
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1. Introduction

Methods of detecting outliers and influential observations have been studied
in wide areas and some of them can be found in Barnett and Lewis [1], Cook
and Weisberg [2], and Kim [7]. As one of the methods, the influence function
method introduced by Hampel [3] has been developed in various fields of statis-
tics. However, it is confined to a class of parameters which can be regarded as
statistical functionals of the parent distributions. The influence function method
is performed by perturbing the parent distribution towards a distribution having
unit mass at a point.

In this work the influence function method is adapted to the likelihood func-
tion. The result in this work can be used for detecting outliers when the un-
derlying distribution is specified by parameters. In Section 2 the conditional
influence function is defined, which can be used for detecting observations that
have a large influence on the likelihood. In Section 3 the conditional influence
function is derived when the underlying distribution is a multivariate normal.
In Section 4 a numerical example is provided for illustration.

2. Conditional influence function
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We denote a vector in R? by zg. For a given distribution function F' defined
on RP, the perturbation of F at x¢ is defined by F, = (1 — )F + €6, for
0 < € <1, where §;, denotes the distribution having unit mass at zo. Let §(F')
be a parameter which is a functional of F' and 6(F.) be the perturbation of (F)
at zo. The influence function for 6(F) at zo (Hampel [3]) is defined by

i BCF) = B(F)

e—0 £

and it measures the instantaneous rate of change of §(F) as F' moves infinites-
imally towards dz,. It is used for identifying observations that have a large
influence on the estimate of (F). If 8(F;) can be expanded in a Taylor series of
¢, then the influence function for 8(F) at zo is the coefficient of the first order
e-term in a series expansion of 8(F;).

Let z1,...,2» be a random sample from a p-variate distribution F' specified
by a parameter vector 8(F). We denote by L(6(F')) the likelihood function of
O(F) given z1,...,zn. When the parent distribution F' is perturbed at zo, the
perturbation of L(6(F)) is defined by L(6(F.)) which is the likelihood function
of the perturbation 6(F;) given z1,...,zn. In view of the above definition of the
influence function, we define the conditional influence function for L(8(F')) given
T1ye.sTn DY

- LO(F.) - LOW)

e—0 I3
Thus the conditional influence function can be used for detecting outliers when
the underlying distribution is F'.

3. A multivariate normal case

We consider a case in which F' denotes a multivariate normal distribution with
mean vector y and covariance matrix £. Then the likelihood function L(u, X)
given the random sample z1,...,Zy, is

2

i=1

1 n
L, %) = (2m) "7/ | T |72 exp {—— > (@i —pw)TE (i - u)} ~
The mean vector and covariance matrix for the perturbed distribution F, are
pe = (1 —€)p+exg
Se = (1 - )T+ e(1 - ) (o — p)(zo — )"
Let
aij = (3 — w) 27Nz — p)
for4,7 =10,1,...,n. We can easily get

| Ye |=| b)) I (1 - E)p(l -}-Otooé‘).
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Further it is easy to show that
(1—e)™™?2 = 1+ ey np( + 1) + O(e%)

2 4
-nf2 _ 1_"1 nn 2 3
(1 + o) 1 5 (t00€ + 1 (2 + 1)a006 + O(e°).
Then Taylor series expansion of | £ |~"/2 with respect to ¢ is computed as
12172 = 52 14+ {20 - 0o } ¢

2

p _np nn 2 {2

+{ 17+ g oot 4(2 +1)0‘°°}5]

+0(e?).
The inverse of ¥ is easily computed as

b= gy {2"1 — 2N — p)(xo — u)TZ_l}e
+{2~1 + (g0 — 1)E (o — ) (o — M)Tz—l}ez +0(e%)
so that Taylor series expansion of (z; — )T X7 (%; — e is given by
s + (us — oy — 2a40)€ + {au + 1+ (a0 — 1) {0 + 1)2}52 +O(e%).

Thus the likelihood function L(ue, £¢) of pe and ¥, given z1,...,z, is expanded
as

L(pe, ) = L(p,X) [1 + (-—-— - gaoo +a1)

1
+ {—(EZ—’ - ZL—CY[)()-I—CH) + g(a?m +p) +a2}52} +O(53)7

2 2 2
where
1 0
a = —= (aii — Qg — 20&,’0)
2 =1

n

-3 {an‘l’l’*'(ao()-—l)(azo‘f—l)}
ga=]

(1 — ono) al——Z( i+ 1).

I

az

Hence the conditional influence function for the likelihood function becomes
n

n; n 1
(1) {—QE ~ 5000~ 5 Y (i — oy - zaw)} L(p, %).
i=1
This cannot be directly used because it involves unknown parameters. Three
sample versions of the conditional influence function are possible as in the in-
fluence analysis (see Kim [5] for more details): the sample conditional influence
function (SCIF), the empirical conditional influence function (ECIF) and the
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delected empirical conditional influence function (DCIF). It is well known that

in general these three sample versions provide very similar results.
n

n
Let Z = (l/n)Zm and § = (1/n)2:(azcz —Z)(z; —2)7. Then i = Z and
2=1 =1
3} = § are the maximum likelihood estimators for y and ¥ respectively. The
likelihood function L(p,Y) attains its maximum value at g = Z and ¥ = S and
the maximum value is

L(z,S) = (2m) "2 | § |2 exp (_n_2p) .

The maximum likelihood estimator for o;; is given by s = (z;—%)T S~ (z; - Z).
It is then always true that L(fi,3.) < L(i, ).

Let #_, be the sample mean based on the random sample of size n — 1 with
the rth observation z, deleted and S_, be the corresponding sample covariance

matrix. Then the SCIF is defined by
SCIF = (n - 1){L(i;, S) — L(F—r, s_,,)}.

Since

S_,', = .'ET e E)(Z’r - j)T

n—lS_ (n—1)2(

= 25 (h- S e -2,

n—1
a little computation yields

n
L(Z—yr,8_p) = (2m)"™/2 | S_, |7 ? exp {—% Y (@i —2)T5) (2 - a‘a_r)}

i=1
e S_, | /]S )
x exp { —(zr — Z—r)" S} (zr — T—r)/2} L(Z, S).

Thus the SCIF is computed as
SCIF = (n-1) [1 P2 S| ]S )
x exp{—(z, — E—T)TS;% (zr — j—r)/z}] L(z, S).

Let F be the empirical distribution function based on z1,...,z,. The ECIC is
obtained by replacing F with F' in (1) and it is given by

n

NI £ Ve _
ECIF = { 2a00+ 5;(&?0-}-204,'0)}[/(%5)

n
since E Qs = np.

i=1
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We define F_, = {14 (n — 1)"1}F —(n — 1)~6,,. Then F_, is the deleted
version of F: with the rth observation deleted. The mean vector and covariance
matrix for F_.,. are given by

/‘(F—T) =T-r
S(E_,) =5,

The DCIF is obtained by replacing F with £_,. in (1)and it has a form similar
to the ECIF.

4. A numerical example

For illustration, we will consider the cost data consisting of 36 measurements
on the per mile cost of three variables - fuel (1), repair (z3) and capital (x3)-
which is taken from p.276 of Johnson and Wichern [4]. The cost data was
analyzed by Kim [6] and by some authors in the references therein. By their
results, it is reasonable to conclude that observations 9 and 21 are possible
outliers,

Table 1. SCIF for the cost data

SCIF || # | SCIF || # | SCIF || # | SCIF || # | SCIF || # | SCIF
7
8

0.032 0.023 || 13 | 0.025 || 19 | 0.022 || 25 | 0.303 || 31 | 0.096
0.105 0.105 |} 14 | 0.022 || 20 ; 0.351 || 26 | 0.064 | 32 | 0.069
0116 [|9 10998 || 156 | 0.169 || 21 | 0.775 |} 27| 0.129 || 33 | 0.034
0.110 {| 10 ] 0.021 {| 16 | 0.064 || 22 | 0.023 || 28 | 0.036 || 34 { 0.030
0.028 || 11 1 0.029 {| 17 | 0.029 || 23 | 0.237 || 29 | 0.068 {| 35 | 0.056
0.035 ]/ 12 1 0.033 |} 18 | 0.097 || 24 | 0.050 || 30 | 0.046 || 36 | 0.174

Cﬁ@b&@[\‘)r—l:ﬁ:

We will provide ounly the first sample version SCIF for illustration since in
general the three sample versions of the influence function yield similar results.
The term (n — 1)L(%, S) in SCIF is common to all observations and therefore
it is redundant for investigating the influence of each observation. Thus we will
compute the values SCIF/[(n—1)L(%, S)] which are included in the column with
the heading SCIF of Table 1. Numbers following # in each column represent
the observations.

The stem-and-leaf display or the index plot of the sample values for SCIF
(not provided here) can be useful for getting information about possible outliers
and they show that observation 9 has the largest influence on the likelihood and
observation 21 is the next. The influence of the others is not relatively severe
compared with those of observations 9 and 21. Thus observations 9 and 21 are
possible outliers.
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