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FURTHER GENERALIZATION OF OSTROWSKI’S
INEQUALITY AND APPLICATIONS IN NUMERICAL
INTEGRATION AND FOR SPECIAL MEANS
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ABSTRACT. In this paper, by introducing a parameter, we establish a new
Ostrowski’s integral inequality which generalizes the result of [5]. Finally,
we apply the new Ostrowski’s inequality to numerical integration and spe-
cial means.
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1. Introduction

In 1938, A. Ostrowski proved the following interesting integral inequality [6]:

Theorem 1. Let f : [a,b] — R be continuous on [a,b] and differentiable in
(a,b) and its derivative f' : (a,b) — R is bounded in (a,b), that is, |f'||lco :=
sup |f'(z)] < 0o. Then for any = € [a,b], we have the inequality:
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The inequality is sharp in the sense that the constant 1/4 cannot be replaced by
a smaller one.

In {5], Dragomir and Sofo gave a generalization of Ostrowski’s integral in-
equality for mappings whose second derivative belong to L™[a, b].
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Theorem 2. Let g : [a,b] — R be a mapping whose first derivative is absolutely

continuous on [a,b] and assume that the second derivative g € L [a,b]. Then
we have the inequality:

/:g(t)dt_ A O P
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(2)

foralla <z <b.

In this paper, we will derive a new Ostrowski’s integral inequality with a
parameter h € [0, 1] for twice differentiable functions, which will not only provide
a generalization of [5], but also give some other interesting Ostrowski integral
inequalities as special cases and showing that the case h = 1 — ? is optimal.
Applications in numerical integration and for special means are also given.

2. Main results

Our main results read as follows.

Theorem 3. Let g : [a,b] — R be a mapping whose first derivative is absolutely
continuous on [a,b] and assume that the second derivative ¢ € L™ [a,b]. Then
we have the inequality
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for alla+h((b—a)/2) <z <b—h((b—a)/2) and h € [0,1].
Proof. Let us start with the following integral equality
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where z € [a,b], provided f is absolutely continuous on [a,b], and the kernel

P:[a,b]2—>Rngivenby
p(xt):{t_[a+ (b—a)], te€la,a]

4
(b—a)], te(z,b )

N



Further generalization of Ostrowski’s inequality and applications 1125

Now choose f(z) = (z - 9%'3) g (z), to get

(1-h) (x_“‘;‘b)g'(w)_ bia (/ab<t_a—2{—b>gl(t)dt

+L3@wﬂ¢m+(—~7)¢%ﬂw>+§w~@wwrwwml@

Integrating by parts we have
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Also upon using (4), we have that

[reofro (i 22 50)]
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Now by (5), (6) and (7) we deduce that
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from where we get the identity
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where ||g"||., = sup |g” ()| < oo. Let
t€(a,b)

Iz/ablp(z;,t)l a;b’dt=/: £ [a+g(b—a)]

b
h a+b
—{b—-=(b— t— dt.
=5 + L.

We have two cases:

(1) For z € [a, °$*] we obtain

a+%(b—a) _
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_ 2 a+b\3 (b—a)3 9 3

By referring to (10), we obtain the result (3) of Theorem 3. W

Corollary 1. Let g : [a,b] — R be a mapping whose first derivative is absolutely
continuous on [a,b] and assume that the second derivative ¢ € L™ [a,b]. Then
we have the inequality

—I——/ng(t)dt—l [(1—h)g<a+b) +(1+h)—g(“);g(b)

b—a 2 2
h ! !
—5 (0~ a)[g' (@) - ¢ (8)]
b—a)?
_”g"“oo( 48) (1—-3h+ 6k — 2% (11)
for all h € [0,1].
Proof. Choose ¢ = 3—2-!:—1) in (3). O

Corollary 2. Let g : [a,b] — R be a mapping whose first derivative is absolutely
continuous on [a,b] and assume that the second derivative g’ € L* [a,b]. Then
we have the inequality

bia/abg(t)d _% [g (a;b) +g(a)_2|_g(b)]

Proof. Choose h =0 in (11). O
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Remark 1. Set h =0 in (3) we can get (2). Therefore, Theorem 3 is a gener-
alization of Theorem 2.

Corollary 3. Let g : [a,b] — R be a mapping whose first derivative is absolutely
continuous on [a,b] and assume that the second derivative g € L™ [a,b]. Then
we have the inegquality

b . 2
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Proof. Choose h =1 in (11). O
Remark 2. For the right hand of (3),

3
<19l OS2

1 o> (b—a)®
P(z,h) = lg"]. [g z— “;L 4! 48“) (1—3h+6h2—2h3)}.
V2

When z be fixed, we can prove when h =1 — <50 P(z, h) obtains its minimum.
Therefore, the following Corollary is optimal in the current situation.
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Corollary 4. Let g: [a,b] — R be a mapping whose first derivative is absolutely
continuous on [a,b] and assume that the second derivative ¢” € L* [a,b]. Then
we have the inequality

b —a .
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3. Application in numerical integration

b
The following approximation of the integral / g(t)dt holds.

Theorem 4. Let [, ca =29 < x1 <+ < Tp_1 < Tn, = b be a partition of the
interval [a,b], di = ;41 — 24, & € %4, Ti41), £ =0,1,--+ ,n—1. Then

b
/ g(t)dt = S (9, Tns &, 1) + R (g, In £, h),
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Proof. Applying (3) on the interval §; € [z;, 241} ,4=0,--+,n — 1, we have
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< 19"l {;

and therefore
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=0

Remark 4. When h = 0, S (g, I,,) may be thought of as the arithmetic mean
of the Midpoint and the Trapezoidal quadrature rules. where

n-—1

IR (0, In)] < 119”0 5 Zd3

4. Applications for some special means

Let us recall the following means:

(1) The Arithmetic mean: A(a,b) = 2 ; b, a,b>0.

(2) The Geometric mean: G (a,b) = vab, a,b> 0.
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(3) The Logarithmic mean:

a, a=>h,
L{a,b) = b—a

a,b>0.
mb_lna’ ° 75
(4) The Identic mean:

I(a’ab): 1 /b =
g(aa> s GJ?éb

(5) The harmonic mean:

H(ab) =+,
+

a,b>0.
a b
The following inequality is well-known in the literature:
H{a,b) < G(a,b) < L(a,b) < I(a,b) < A(a, b).
The inequality (3) may be rewritten as
1-h 1 b
o - AN @)+ 5[0 Bo@ ++n HEEI0)]

b
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We may now apply (12) to deduce some inequalities for special means given
above, by the use of some particular mappings as follows.
1. Consider g (z) =Inz,z € [a,b] C (0,00). Then

ﬁ/bg(t)dt=lnl(a,b), 9@ *90) 116 (ab)

2
and

1
9"l = sup lg" (t)] = .
19 t€(a,b) a?

From (12) we have that

1) (1_A(a,b)>

- +(1—-h)lnz+ (1+h)InG(a,b)
h(b—a)?
—21nI(a,b)+Z o>
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(b~ a)®
48

<2 [__1__ iz — Ada b +

_ 2 613
<z 5= (1 - 3h + 6k 2h)]

for all a + h((b—a)/2) <z <b—h((b—a)/2) and h € [0,1].

Whenx=a+b

= A(a,b), we have

(1—h)InA(a,b)+ (1+h)InG (a,b) — 2InI (a,b) + Z_(b ;ba)z

2 (b“a)z 2 3
< 1- 6h° — 2
_aQ[ I (1-3h+6h h?)

for all h € [0, 1].
2. Consider g(z) = 1,z € [a,] C (0, 00), then
1

b—a

/ Sode—1 @), LOEIO gy

and

2
1 1"
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From (12) we have that

1-h A(a,b) 1+h_._4 -1
i . (1 5 )—I— 5 H *(a,b)— L™ (a,b)

12 (0 )y (@)~ ()
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48

<2 [—1- e — A(a, B[ +

_ 2 _op3
S (1-3h+6h 2h)}

foralla+ h((b—a)/2) <z <b-h((b-a)/2) and h € [0,1].

Choosing z = 9——;:— = A (a,b), we have

i T @ - 17 @)+ (- (@) - o 0]
2
< 218 g rere - om)

for all h € [0,1].
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