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A DIFFERENTIAL EQUATION WITH DELAY FROM
BIOLOGY
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ABSTRACT. The purpose of this paper is to present a differential equation
with delay from biological excitable medium. Existence, uniqueness and
data dependence (monotony, continuity, differentiability with respect to
parameter) results for the solution of the Cauchy problem of biological
excitable medium are obtained using weakly Picard operator theory.
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1. Introduction

In recent years the theory of excitable medium has rapidly developed and its
results have been applied in various areas: chemistry, biology, ecology, electric
engineering, populations dynamics, cardiology, neurology. At present, differ-
ent approaches for the mathematical description of biological excitable medium
by means of partial-differential equation, functional-differential, functional and
discrete equations are applied. The papers [2], [3], [10] has offered the oppor-
tunity for understanding the normal regulation of living systems as well as its
anomalies.

The activity of the i-th element of the excitable medium can be described by
the following equation:

() = aifi(y(t — ), ... ,Bm(t — b)) — bizs(t) )

where z;(t) is the activity of the i-th element; a; is the functional parameter of
the i-th element; f;(-) is the feedback function; b; is the decay constant, i = 1, m.
The aim of this paper is to study the following problem

zi(t) = aifi(z1(t — h), ..., Tm(t — ) — bzi(t), 2)
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t € [to, b],7 = 1, m, with initial conditions

zi(t) = @i(t), t € [to — h,to), (3)
where
(Hy) to <b, h>0, to,b,h € R;
(H) fi € C(R™R), i=1,m;
(H3) @i € C([to — b, to), R), i = 1,m;
(Hy) there exists Ly > 0, such as:

|fi(’U;1,. e ,Um) - f’i(vla-' . avm)i < sz |ui - Ui[a
1=1

for all u;,v; € R,i=1,m.
By a solution of the problem (2)-(3) we understand the function z = (1,
+Tm) € R™ with z; € C([to — h, b], R)NC*([to, b], R), ¢ = 1, m which satisfies
(2)-(3).
The problem (2)—(3) is equivalent with the following fixed point system:
@i(t), t € [to — hstol,

t
zi(t) =1 @i(to)e %) 4 g / e fi(x1(s — h), ..., (4)
i
(s — B))ds, tE[to, ],

where z; € C([to — h,b], R), i =1, m.
On the other hand, the system (2) is equivalent with

xi(t), te [to — h, to],
t
wz(t) = zi(tﬂ)e_bi(t_to) + ai/ ebi(s_t)fi(xl(s - h)) tr) (5)
12
Zm(s — h))ds, € to, ],

where z; € C([to — h,b], R), i =1, m.
In this paper we apply the weakly Picard operators technique to study the
systems (4) and (5).

2. Weakly Picard operators

I.A. Rus introduced the Picard operators class (PO) and the weakly Picard
operators class (WPO) for the operators defined on a metric space and he gave
basic notations, definitions and results in this field in many papers [7]-[9]. Some
problems concerning this techniques were study in [4}, [11], [5], [6].

Let (X, d) be a metric space and A : X — X an operator. We shall use the
following notations:

Fy:={z € X | A(z) = z} - the fixed point set of A;

I{A) :={Y Cc X | A(Y) CY,Y # 0} - the family of the nonempty invariant
subset of A;

Antl = Ao A", A =1x, Al = A, n€ N;
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P(X):={Y C X |Y # 0} - the set of the parts of X;

H(Y,Z) := max ¢ sup inf d(y, z), sup inf d(y, z)} -the Pompeiu-Housdorff func-
yey2€2 z€ZY€Y
tional on P(X) x P(X).
Definition 1. ([7], [9]) Let (X, d) be a metric space. An operator A: X — X
is a Picard operator (PO) if there exists z* € X such that:
() Fa={z*};
(if) the sequence (A™(x0))nen converges to z* for all zg € X.

Remark 1. ([7], [9]) Accordingly to the definition, the contraction principle
insures that, if A : X — X is an o -contraction on the complete metric space
X, then it is a Picard operator.

Theorem 1. ([7], [9]) (Data dependence theorem). Let (X,d) be a complete
metric space and A, B : X — X two operators. We suppose that
(i) the operator A is a o -contraction;
(ii) Fp # 0;
(iii) there exists n > 0 such that d(A(z), B(z)) <n, Vo € X.
Then, if F4 = {z%} and o} € Fp, we have
U

* *
K e,
d(zy,zp) < 1~ o

Definition 2. ([7], [9]) Let (X, d) be a metric space. An operator A: X — X

is a weakly Picard operator (WPO) if the sequence (A™(z))nen converges for
all z € X, and its limit (which may depend on z) is a fixed point of A.

Theorem 2. ([7], [9]) Let (X, d) be a metric space and A: X — X an operator.
The operator A is weakly Picard operator if and only if there exists a partition
of X,

X = UX,
AEA

where A is the indices set of partition, such that:
(a) Xy €I(A), A€ A;
(b) A|x, : XA — X is a Picard operator for all A € A.

Definition 3. ([7], [9]) If A is weakly Picard operator, then we consider the
operator A* defined by

A® X = X, A®(z) = lim A™(z).

n—00

It is clear that A®(X) = Fjy.

Definition 4. ([7], [9]) Let A be a weakly Picard operator and ¢ > 0. The
operator A is ¢ -weakly Picard operator if

d(z, A=(x)) < cd(z, A(z)), Vz € X.
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Example 1. ([7], [9]) Let (X, d) be a complete metric space and A: X — X a
continuous operator. We suppose that there exists o € [0,1) such that

d(A%(z), A(z)) < ofz, A(z)), Yz € X.

Then A is ¢ -weakly Picard operator with ¢ = 5

Theorem 3. ([7], [9]) Let (X,d) be a metric space and A;: X — X, i =1,2.
Suppose that

(i) the operator A; is c;-weakly Picard operator, i=1,2;
(ii) there exists m > 0 such that d(A;(z), Ao(z)) <7, Vz € X.

Then H(Fa,,Fa,) <nmax{ci, c2).
Theorem 4. ([7], [9]) (Fibre contraction principle). Let (X,d) and (Y, p) be

two metric spaces and A: X xY - X xY, A=(B,C), (B: X - X, C:
X xY —Y ) a triangular operator. We suppose that

(i) (Y,p) is a complete metric space;
(ii) the operator B is Picard operator;
(iii) there exists | € |0,1) such that C(z,*): Y — Y is a l-contraction, for all
r€ X,
(iv) if (z*,y*) € Fa, then C(-,y*) is continuous in z*.

Then the operator A is Picard operator.

3. Cauchy problem

We consider the fixed point system (4).
Let Ay : C([to — h,b], R™) — C([to — h, b], R™) given by the relation

Ap(z) = (Ap (21, .- s Zm)s - Ap (1,0, Tm),
where
@i(t), t € [to = h,to], t
An(an . am)®)i= { lto)e 00 4o e,

Jili(s —h), ... ,zm(s — h))ds,t € [to, b].

We consider the Banach space C([to — h, b], R™) with the Chebyshev norm ||-{| .
Let X = (C([to — h,b],R™),||llc). We have the following result

Theorem 5. We suppose that
(i) the conditions (H;)—(H,) are satisfied;
m

(ii) Ly(b~ to)Z%e_b"t" <1

i=1 "t
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Then the Cauchy problem (2)—(3) has in C([to — h, b], R™) a unigue solution.
Moreover, the operator Ay : C([to — h,b], R™) — C([to — h, b}, R™) is c-Picard
with )

c= ™

1— Lf(b_to)zbz —b ito

(1
Z—

,_\

Proof. For t € [tg — h,tp], we have

|Ay, (21, ... , Tm)(t) — Afi(Tl’ s Im)#)] =0, =1,
For t € [ty, b], we have

|Ag (@1, .., Zm)(t) — A (T1, ..., Tm)(B)]

/tt SO, (215 = B, .., 5m(s — h))
~h(@a(5 — e Bl ~ BN

< St (b - to)Lf<nw1 ~Tilg+ -+ Jom = Fnllo)i=Tm.

(]

=aq;

Then
”Af(xlr"a xm)'—Af(afla Em)“C

< Lf(b - to)z b‘l e_b to “(.7)1,. e ax’m)_(fl, s sim)“C .

i=1 ¢

) , . 1 o~ e—bit
So Ay is c-Picard operator with ¢ = I—_L—Af,where Ly, = Ls(b—to Z: 0,

O

In what follows, we consider the following operator
By : C([to — h, b}, R™) — C([to — h,b], R™)
given by
Bi(z) = (Bp(x1,... 1 Zm),- .., By, (1, .., 2m)),
where
fL‘,;(t), te [to - h, to],
¢
Bf (@1, 3m)(t) = zi(to)etilt-t) 4 ai/ ebils=t).
to
‘fi(zl(s - h’)a cee amm(s - h’))ds’t € [th b]

Theorem 6. In the condition of Theorem 5, By : C([to — h,b], R™) — C([to —
h,b], R™) is WPO.

Proof. The operator By is a continuous operator but it is not a contraction. Let
take the following notation:

Xp: i={i € O(lto — by b, R)| @ilo-ol = 03 i = T }.
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Then we can write
C([to—h, b}, R™) = U Xpy XX Xy, i=1,m. (6)
(piEC([to—‘h,tO],R)
We have that Xy, x...x X, € I(Byf) and By|x, x..xX,,, is a Picard

operator, because it is the operator which appears in the proof of the Theorem
5. By applying the Theorem 2, we obtain that By is WPO. U

4. Increasing solutions of the system (2)
4.1. Inequalities of Caplygin type

Theorem 7. We suppose that

(a) the conditions of the Theorem 5 are satisfied;

(b) ui,v; € R, u; <wi, 1 =1,m implies that

fi(ul’ cee aum) < fi(vh ou ,'Um),i = T:—m—
Let (z1,...,%m) be a solution of the system (2) and (y1,...,Ym) a solution
of the inequality system
%i(t) S aifs(yi(t = k), ym(t — b)) — biys(t), t € [to, B].

Then y;(t) < z;(t), t € [to — h,to], ¢ = 1,m implies that (y1,...,ym) <
(931, e ,.’tm).

Proof. In the terms of the operator By, we have

@1y Tm) =B ( 1,0 ., T ) and (Y1, ., Ym) < B, - Ym)-

However, from the condition (b), we have that Bg° is increasing,

Wir - ¥m) S BP (Y15 2Ym ) = BFP(Uiltohito]s - - Imlitohite] ) <
< BP( Zalitohtolr -+ s Tmligotuzo] ) = (21, «+- »Tm)-

Thus (y1,...,ym) < (T1,-- -, Tm)-

Here, we use the notation Z; € Xmihm i=1,m. O

—h,tg]?
4.2. Comparison theorem

In what follows we want to study the monotony of the solution of the problem
(2)~(3), with respect to ¢; and f;, i =1, m. We shall use the result below:

Lemma 1. (Abstract comparison Lemma). Let (X,d, <) be an ordered metric
space and A, B,C : X — X be such that:
(i) AKB<LC;
(ii) the operators A, B,C are WPO;
(iii) the operator B is increasing

Then z <y < z = A%®(z) < B®(y) < C®(z).

In this case we can establish the theorem.
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Theorem 8. Let f/ ¢ C(R™ R), i=1,m, j =1,2,3.
We suppose that
(a) f2(-,...,"): R™ — R is increasing, i = 1, m;
b) fi<ff<fF i=1m
Letz9 = (21, ...23.) be a solution of the equation
Zi(t)=a;fd (z1(t — h), ..., zm(t — b)) — bz (t),

where te[ bhi=1m, j=1,2,3.
If zl(t) < 22(t) < z2(t), t € [to — hyto), then z} < z2 < 23, i =T, m.

Proof. From Theorem 5, the operators B, j=1,2,3 are weakly Picard opera-
tors.

Taking into consideration the condition (a), the operator B? is increasing.

From (b) we have that B} < B? < B?.

We note that (z?,...,20 ) = B}“(E{,... ,Z3), 7 = 1,2,3. Now using the
abstract comparison lemma, the proof is complete. O

5. Data dependence: continuity

Consider the Cauchy problem (2)-(3) and suppose the conditions of the Theo-
rem 5 are satisfied. Denote by z(:, ¢, f) = (z1(:;¢1, f1), - -+ » Zm(*; ©m, fm)), the
solution of this problem. We can state the following result:

Theorem 9. Let goz, Ji=1m m, 7 =1,2 be as in the Theorem 5. Furthermore,
we suppose that there emsts ni,m2,i=1,m such that

() |0i®) — 2| <mi, VEE [to—hto), i =T,m;
(i) |fHugy. e um) = fPur, .. um)| <02, i=T,m, u € R.
Then

m m

Zn}e—bi(t—to) + _ tO Z -—bd.o

sty 01, i) — zattel, £)| < = = :
1-Lys(b—to Z—— bito

117’

where Ly = max(Lys1, Ly2),i =1,m.

Proof. Consider the operators 4 ; 1,1 = 1,m,j = 1,2. From Theorem 5 these

operators are contractions.
Additionally

HAw; f;(:t:l,... yTm) — A o2,52(Z15 ,wm)”

a;
<ane—b i (t— t°)+(b~—t0 sz bt"m»
=1

i=1 *

C

S

Vz = (z1,...,2m) € C([to — h,b], R™).
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Now the proof follows from the Theorem 1, with A := A(p; e B= A 2 p2, =

m
o a'L —
Z nre b=t 4 (p — to)zb e %2 and a := La, = Ls(b— to)zb g~ bito
=1 ¢ i=1""
where Ly = max(Lg1, Ly2),1 =1, m. a

From the Theorem above we have:

Theorem 10. Let f} and f? be as in the Theorem 5, i =1, m. Let SB,1158,,

be the solution set of system (2) corresponding to fi and fZ,i =1, m. Suppose

that there exists m; > 0,1 = 1,m such that
Ifil(ul"'-aum)_fzz(ulﬁ""um)’-<_77'i (7)

for allu; € R,i=1,m.
Then

ma
_tO Zb_ —bto
— m

a,' —b;t
—Le(b—t —gVite
1—Ly(b 0); b,
where Ly = max(Ly1, Lyz) and Hy. , denotes the Pompeiu-Housdorff functional
with respect to ||-|| on C([tg — h,b], R™).

I

H||«1|C(SBf; s SBf?) <

Proof. In condition of the Theorem 5, the operators Bfil and Byz,7=1,m are
¢1-WPO and c¢p-weakly Picard operators.
Let

X, = {5 € C(lto = hy bl B)| il tg-ry o) = 31 = T -

It is clear that Bg1|x,,, = As1, Byz2x,, = Asz. So, from Theorem 2 and Theorem
5 we have

XA RS-

m
<Lp(b- tO)Z%ewbit"

i=1""
”B]%g (z1,...,2 )—sz (z1,- .. ,a:m)HC
<Lf2 —tozz_bto

for all (z1,...,Zm) € C([to —h,bl,R™),i=1,m.
Now, choosing

a1 = Lfl — 1o Z e %t and ag = Ly (b — to)Z#B_bito,
=1 =1

(o]

Bf}(ml,'" ,xm) —(wla-'- ,Im)HC,

sz Tlyeeoy m)—(:v1,...,1‘m)HO,

3
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we get that By and Byz are cj-weakly Picard operators and cp-weakly Picard
operators with ¢; = (1 —a3)™! and ¢; = (1 — @) ~!. From (7) we obtain that

m

”Bft;(ml, - ,$m) - Bff(xl, e ,.”L'm)”C < (b — to)z%e“bimnh

=1t

Y(z1,...,Zm) € C([to — hyb], R™),i = 1,m. Applying Theorem 3 we have that

m
ai _p.
(b*to)Z#e bto,
i=1 "

Hy);(58,1,58,5) < " )
—Lg(b— e it
1—Ly( to}; b,
where Ly = max(Lg1, Ly2) and Hy.y  is the Pompeiu-Housdorff functional with
respect to ||-||; on C([to — h, b}, R™). O

6. Data dependence: differentiability
Consider the following differential system with parameter
.’El-(t) = aifi(ml(t - h), . ,.’Bm(t - h), )\) - bi(L'i(t),t S [to, b],'lf = m, (8)

)

:ci(t) = (,Dz'(t), te [to — h, to],i = 1,_m (9)

Suppose that we have satisfied the following conditions:
(C1) to < b,h >0, J C R a compact interval;
(C2) f; € CYB™ x J,R), i=T,m;
(C3) i € C([to — hyto], R), i =1, m;
(C4) there exists Ly > 0, ¢ = 1,m such that

Ofi(u1, ... yum; )

<L’ i€R1 :—1—7——1/\6'];
aui S L, u ) m

m
(Cs) Ly(b— to)z%ie“bito <1
=1

Then, from Theorem 5, we have that the problem (2)-(3) has a unique solu-
tion, (iﬂ;{(, ’\), e aw:n('7 ’\))
We prove that z}(-,\) € C}(J), V t € [tp—h,b],i=T1,m.
For this we consider the system
Ti(t, A) = aifi(@i(t — B N), .o Tt — By A); A) = bizs (6 A), (10)
t € [to,b], A€ J, zi € C([to — h,b] x J,R)y N C([to,b] x J,R), i =T, m.

Theorem 11. Consider the problem (10)-(9), and suppose the conditions (Cy)-
(Cs) hold. Then,
(i) (10)-(9) has a unique solution (z{(-,A), ..., z5(, A)), in C([to — h, b] X
J,R™);
(i) (A, 2k (4, A) € CHJ), Yt € [to — h,b],i=T,m.
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Proof. The problem (10)—(9) is equivalent with the following functional-integral
equation
i(t), t € [to — h,to] ,
zi(t; A) = i(t)e~bitto) 4 ai/ G f (s — M N), ...,

Em(s ~ 15 ) ), € [to, ] (11)

Now let take the operator
A:C([tp = h,b] x J,R™) — C([to — h,b] x J,R™),
given by
Alxy,...yZm) = (A1(Z1, -1 Zm),y .- Am(Z1, - -+ Tm),

where

(pi(t), te [to - h, to] ,
Ai(xla e 7$m)(t; )‘> = (Pi(t>e—bi(t—t0) + @; / ebi(s_t).
t
Siw1(s = B X)s- s Bm(s = i A X), o,
Let X = C([to — 71,b] x J,R™).
It is clear, from the proof of the Theorem 5, that in the condition (C;)-(Cs),

the operatord : (X, ||-{lg) — (X, |Ill¢) is Picard operator.
Let (x%,...,z%,) be the unique fixed point of A.
*

Supposing that there exists é;\i , i =1,m, from (11), we have that

8zt [ hioy Ofi(@i(5=h ), h(s—h; A); X)  Bzi(s — b, N)
ax—ai/t‘oe By . X ds+...
+ai/teb"(H) Afi(xf(s—hs A),.. .,z (s—hs A); A) ' oz} (s — h, /\)ds-l—
to 6um aA
+ ai/t ebi(s—t)afi(m{(s_h; /\)78)\’ .’L':n(S—h; >‘)7 >‘) ds,
to

for all ¢ € [to,b], A€ J;i=1,m.
This relation suggests us to consider the following operator

C:XxX X,

(mlﬁ"' s Tms ULy« s ,'U'm) ~>C($1,... y Tmy ULy o oo aum)a
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where Ci(T1,...,Tm,Ut,-.. ,Un)(t; A)=0for t € [to—h,to], A € J,i = 1,m and
Ci(wl,... 3 Lo, ULy - o« ,'U,m)(t; )\)
. /t ebi(s_t)aﬁ(x‘{(s — A, ..,z (s —hy A A)
o ou
to 1
t * . * . .
+ai/ ebi(s—t)afi(xl(s'_ha A)gﬁ'{]ﬂxm(s_ha ’\))/\) Ay,
to m

ta, /tebz’(s—t)afi(xt(s“h;’\)7é)'\’$:n(5“h; NN 4o
t

~ui(s—hyA)ds+. ..

(s—h; N)ds +

0

fort € [to, b, A€ Ji=1,m.
In this way we have the triangular operator

D: XxX - XxX,

(Z1ye -0y Tony Utye « oy Um) = (A(Z15e - oy Tem), C(T140 « o) Tony Uye - o, Unn) )y

where A is Picard operator and C(zy,...,Zm,,...,-) : Y — Y is L¢ -contraction
m
an
with Lo = Ly(b— 1)) —e i,
¢ = Lg( 0); b

From Theorem 4 we have that the operator D is Picard operator, i.e., the
sequences

(.’1211n+1, veey xm,n+1) :ZA(IL'L',L, N 7$m,n)7
(ul,n-i—l; ces aum,n-f-l) ::C(xl,m s Tmny Ui ny e . aum,n)a

n € N, converges uniformly, with respect to t € X, A € J, to (z1,..., 2}, u},
,ujn) € Fp, for all (:IIL(), ves ,xm,o) € X, (ulyo, Ve ,um,o) € X.
If we take

3017():0,... y Lm,0 :O)
S 0z1,0 0 T OTm,0 0
1,0 aA ) M} m,o - a)\ — My
then
azl 1 6$m1

By induction we prove that

6321 n a7(7'mn
Uln = a): 7"'7um,n:““a“f_7vn€N
So
uni uni
Tin mif I, Tmn mif Zy,, 88N — 00,
——axl’" untf Uy —————axm’" undf wr, asn — 00
oA ) m '
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From a Welerstrass argument we have that there exists

[

8.
9.

ok
—)", t=1,m and

8x{_u* ozy,
A VT e ™

oz*

m u*
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