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CONDENSED CRAMER RULE FOR COMPUTING A KIND
OF RESTRICTED MATRIX EQUATION

CHAO GU* AND ZHAOLIANG XU

ABSTRACT. The problem of finding Cramer rule for solutions of some re-
stricted linear equation Az = b has been widely discussed. Recently Wang
and Qiao consider the following more general problem

AXB=D, R(X)CT, N(X)>DS.

They present the solution of above general restricted matrix equation by
using generalized inverses and give an explicit expression for the elements
of the solution matrix for the matrix equation. In this paper we re-consider
the restricted matrix equation and give an equivalent matrix equation to
it. Through the equivalent matrix equation, we derive condensed Cramer
rule for above restricted matrix equation. As an application, condensed
determinantal expressions for Ag? )SA and AAg? 29 are established. Based
on above results, we present a method for compliting the solution of a kind
of restricted matrix equation.
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1. Introduction

Let C™ denote the n-dimensional complex vector space, C™*™ denote the set
of all complex m xn matrices, C**" = {X € C™*" : rank(X) = r}, and dim(L)
denote the dimension of a subspace L of C". The symbols AT, 4*, R(4), N(4),
rank(A) and det(A) denote, respectively, the transpose, the conjugate transpose,
the range, the null space, the rank and the determinant of A. For 4 € C™*",
z € C™ and y € C", let A(i — z) stand for the matrix obtained by replacing
ith column of A by z, and A(y” « j) denote the matrix obtained by replacing
jth row of A by yT.
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Let A € C™*" and X € C"*™ such that
AXA= A, XAX =X, (AX)* = AX, (XA)" = XA.

Then X is called the Moore-Penrose inverse of A, and denoted by X = Af.
For A € C"*", the smallest nonnegative integer k such that rank(A*+1) =
rank(A*) is called the index of A, and denoted by k = Ind(A).
Let A € C™*™ with Ind(A) = k, and X € C™*" such that

ARIX = A% XAX = X, AX = XA.

Then X is called the Drazin inverse of A, and denoted by X = A4. In particular,
when Ind(A) = 1, the matrix X satisfying above matrix equations is called the
group inverse of A, and denoted by X = A,.

If A is nonsingular then, for any b, the solution of the nonsingular linear
equation

Az =b

is given by the classical Cramer rule (for an elegant proof see [3]). A number
of authors have extended the Cramer rule to general A and b. Since 1982, the
trick of Robinson has been used to derive a series of Cramer rules [4-8] for the
minimum-norm solution Atb of a consistent linear equation

Az =b, be R(A),

where At is the Moore-Penrose inverse of A; for the minimum-norm(M) and
least-squares(N) solution A}LVI’ nb of inconsistent linear equation

Az =D,

where A;fvf, w is the weighted Moore-Penrose inverse of A, M and N are Hermitian
positive definite matrices [1, 2]; for the Drazin inverse solution Agb of a class of
singular equation

Az =b, z¢€R(A®), bc R(A"),

where k = Ind(A); for the unique solution Ag?’ )sb of a general restricted linear
equation

Az =b, zeT, (1.1)
where A € C™*" pe AT and TN N(A) = {0}, AT S =C™.

Recently, Wang and Qiao consider the following more general problem [10].
Given A € C™*™, B € CE9, D € C™*?, solve X in the restricted matrix
equation

AXB=D, R(X)cT, N(X)D>8 (1.2)
for the predetermined subspaces T € C" and S C CP.

If we define the range and null space of a pair of matrices A and B as sets of
matrices:

R(A,B)={Y : Y =AXB for some X }
and

N(A,B)={X : AXB=0},
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then the restricted matrix equation (1.2) has a solution if D € R(A, B). Wang
and Qiao [10] present the solution of above general restricted matrix equation
with some conditions by using generalized inverses and give an explicit expression
for the elements of the solution by general Cramer rule. Their basic idea is to
construct a nonsingular bordered matrix from the original matrix by adjoining
to it certain matrices.

In this paper, we will refine the earlier work in [10]. First, we present an
equivalent matrix equation of (1.2). Second, we give a condensed Cramer rule

for the solution of (1.2) and condensed determinantal expressions of Af(l?’ )SA and

AA%?’ )S Finally, we present a method for computing the solution of matrix
equation (1.2).

Lemma 1.1[1,2]. Let A € CI**", T be a subspace of C" of dimensiont <,
and let S be a subspace of C™ of dimension m —t. Then A has a {2}-inverse
X such that R(X) =T and N(X) = S if and only if

AT @ § =C™,
in which case X is unique and denoted by Ag )S

Lemma 1.2[2]. (1) Let A € C™*". Then for the Moore-Penrose inverse Af,
one has: @

(a:) AT = AR(A*),N(A*)'

(2) Let A, E € C"*™. Then for the Drazin inverse Aq and the group inverse
E,, one has:

(6) Aa = A 1) vy where k = Ind(A);
(c) Eg = Ag()E), N(E)» Where Ind(E) =1,

(d) R(Eg) = R(E), N(Eg) = N(E);

(e) EE; = EgE = Pr(gy,N(E), where Pr(m) N(E) 15 o projector;
(f) Pr(g),nE) + Pnee),r(E) = I, where I is an identity matriz.

Lemma 1.3[11]. Let A € C"*", T C C", S C C™, dim(T )=dim(S*)=t < r.
In addition, suppose G € C"*™ gsuch that

R(G)=T, N(G)=S.
If A has a {2}-inverse A%)S, then Ind(AG) = Ind(GA) = 1. Furthermore, we
have AT = G(AG), = (GA),G.

2. Equivalent matrix equation

Now, we consider the solution of (1.2). Let A € C1**", B € CE*?, D e C™x9,
TcC",ScC™ T cCqand S CCP satisfy

dim(7) = dim(S*) =t <rand AT ® S =C™,
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and

dim(T) = dim(8*) =t < # and BT @ S = CP.
From [10], we know that the restricted matrix equation (1.2) has unique solution.
I:emma 2.1[2,10]. Given the matrices A, B, D, and the subspaces T, S, T,
S as above. If D € R(AG,GB), for some matrices G € C"*™ and G € CI*P
satisfying

R(G)=T, N(@)=S, R(G)=T, N(G) =5,
then the matriz equation (1.2) has the unique solution

X = A%%DBY..

In the following we present some special cases of (1.2) which can be found in
(2,9]. The Lemma 2.2 is from Lemma 2.1 by setting G = A* and G = B*.

Lemma 2.2[2,10]. Let A€ C™*™ , B e C?*9, D € C™*9, Let D satisfy
D € R(AA*, B*B).
Then the restricted matriz equation
AXB=D, R(X)cCR(A*), N(X)> N(B*)
has a unique solution X = A'DB?,
The Lemma 2.3 is from Lemma. 2.1 by setting G = A and G = B*2,

Lemma 2.3. Let A € C**", Ind(A) = k1, B € C™™, and Ind(B) = k. And
let D € C"*™ gsatisfy
R(D) C R(ARM+1 phatly,
Then the restricted matriz equation
AXB =D, R(X)cC R(A"), N(X) > N(B*)
has a unique solution X = AgDBy.

We introduce first two formulas of regular inverse which will be used later.

Theorem 2.1. Let A, T, S and G be as in Lemma 2.1 and
AT ¢ S =C™.

Let Uy, Vi be matrices of full column rank whose columns form bases for N(GA)
and N((GA)*), respectively. We define

E=UV;.

Then
(GA+ E)wl = (GA)y + E,. (2.1)

Proof. By hypothesis, we deduce that
R(E) = R(UVY) = R(Uy) = N(GA), (2.9)
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N(E) = N(iV7') = N(V7) = [R()]* = [N(GA)']* = R(GA).  (2.3)
Thus
(GA)E =0, E(GA) =0.
Since rank(E?) = rank(E), we know that Ind(E) = 1. From Lemma 1.2 (d),
(2.2) and (2.3), we have

(GA)E, =0, E(GA), =0. (2.4)
Using (2.2)-(2.4), Lemma 1.2 (e) and (f), we obtain
(GA+ E)((GA)g + Ey)

It

(GA)(GA)y + (GA)E, + E(GA)y + EE,
Pr(ca),n(ca) + Pnca),rca)
= L
Therefore (GA + E)~! = (GA), + E,. 0O

Theorem 2.2. Let B, T, S and G be as in Lemma 2.1 and
BT ® S =CP.
Suppose that Uy, V2 be matrices of full column rank whose columns form bases
for N(BG) and N((BG)*), respectively. We define
F=UVy5.
Then (BG + F)~! = (BG), + F,.
Proof. The proof is similar to Theorem 2.1. O

Now, the equivalent matrix equation of (1.2) is presented as follows.

Theorem 2.3 Given the matrices A, B, D, E, F and the subspaces T, S,
T, S as in Theorem 2.1 and Theorem 2.2. Suppose that matrices G € C*™
and G € CT*? satisfy R(G) = T, N(G) = S, R(G) = T, N(G) = S. If
D € R(AG,GB), then the restricted matriz equation (1.2) is equivalent to the
nonsingular matriz equation

(GA+E)X(BG + F) = GDG. (2.5)
Proof. 1t has been proved in [10] that (1.2) has a unique solution Ag,% )SDB;,2 )5 .

From Theorem 2.1 and Theorem 2.2, we have that (GA+ E) and (BG + F) are
nonsingular. So (2.5) has a unique solution. From assumptions, we have

D = AGYGB, for some Y € C™*4
and
N(E) = R(GA), R(F) = N(BG).
Thus
EGA =0, BGF =0,
E,GD = E,GAGYGB =0,
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and DGF, = AGYGBGF, = 0. Hence
X (GA+ E)"'GDG(BG + F)™!

(GA),GDG(BG), + (GA),GDGF, + E,GDG(BG), + E,GDGF,
2 2

AFSDBY: .

d
Corollary 2.1. Let A € C™™", B € CP*, D € C™*9. Let U € CP*{"~")
and V € Cgfg” =) be matrices whose columns form bases for N(A) and N(B),
respectively. Define E = UU* and F = VV*. If D € R(AA*, B*B), then the
restricted matriz equation

AXB =D, R(X)CR(A"), N(X) D> N(B") (2.6)
is equivalent to the nonsingular matriz equation
(A*A+ E)X(BB* + F)=A*"DB*. (2.7)

Corollary 2.2. Let A € C**", Ind(A) = ki, B € C™™, Ind(B) = ky,
rank(A¥) = r, rank(B*) = s, and D € C™™. Let U,V; € CKS’L_T)
be matrices whose columns form bases for N(A¥) and N(A*1), respectively.
Let Uz, V5 € szgm—s) be matrices whose columns form bases for N (B’”) and
N(B¥3), respectively. We define E = U V) and F = UpVy. If

D € R(AR+1, BRH1),

then the restricted matriz equation

AXB =D, R(X)c R(A"),N(X)> N(B"), (2.8)
18 equivalent to the nonsingular matriz equation
(Ak*! + B)X (Bt + F) = AR DB*>. (2.9)

3. Condensed Cramer rule

In this section, we present a condensed Cramer rule for the solution of (1.2)

and condensed determinantal expressions for AS‘,?’ )SA, AA%?, )S

Lemma 3.1[10]. Let A € C*™, B € CI**™ and D € C**™ be given. Then the
unique solution X = (z4;) € C™*™ of the matriz equation
AXB=D
is given by
b il det(A(i — d)))det(B(e — j))
“ det(A)det(B) '

where dy is the lth column of D and e; is the lth column of the m x m identity
matric.

(i=1,---,mj=1---,m), (3.1)
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Theorem 3.1. Let A, B, D, T, 8, T, 8, Uy, Vi, Ua, Vs, E, F be as in Theorem
2.3. Then the unique solution X = (z;;) € C™*P of (1.2) is given by
P L det((GA+ E)(i — d;))det((BG + F) (el « j))
det(GA + E)det(BG + F)
(i=1,--- 1n;j:1"" ap)a
where dy is the lth column of GDG and e, is the lth column of the p X p identity
matriz.

Tij s

Proof. Since (1.2) is equivalent to the nonsingular matrix equation (2.5), we can
derive a condensed Cramer rule for (1.2) by using Lemma 3.1 to (2.5). a

Remark. The result is better than Wang et al. in [2]. We note that (UV)~!
employed in their condensed Cramer rule.

Corollary 3.1. Let A, B, D, U, V, E, F be as in Corollary 2.1. Then the
unique solution X = (z;;) € C"*? of
AXB =D, R(X)CR(A"), N(X) > N(B*),
s given by
1 det((A*A+ E)(i — dy))det((BB* + F)(el ]))
det(A*A + E)det(BB* + F)
(iz]‘»"';n’J—la '7)’

where d; is the lth column of A*DB* and e; is the lth column of the px p identity
matric.

Ty =

Corollary 3.2. Let A, k1, B, ko, D, Uy, Vi, U, Va, E, F be as in Corollary
2.2. Then the unique solution X = (z;;) € C*™™ of

AXB =D, R(X) C R(A*), N(X) D> N(B*2),
18 given by
iy det((A¥H1 + B)(i — dy))det((BF*! 4 F)(e] — )
det( AR+ + E)det(BF2+! + F) ’
(1/: 1’ ,'ﬂ,j: ]_’ 7m),

where dy is the lth column of A¥*DB*? and e; is the Ith column of the m x m
identity matriz.

:IZij

It is well known that if A is nonsingular, then the inverse of A is given by
_det(A(1 — ¢;))

det(4)
where e; is the jth column of identity matrix. We can obtain (3.2) immediately
by following lemma with D = I.

A} hj=1,2,,n, (3.2)
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Lemma 3.2[2). Let A € C'*™ and D € C™*™. Then the unique solution
Y = (y; ;) € C"*™ of the matriz equation AY = D is given by
_ det(A(i — dy))
Yij = T det(A) (¢
where d; is the jth column of D.

2172a‘“an;j=1a2a”'am)7

The determinantal expression of the regular inverse can be extended to the

generalized inverses AT, A4 and Ay, but A t.s» The reason can be found in [12].
These results offer a useful tool for the theory and computation of generalized

inverse. By using Theorem 2.1, Theorem 2.2 and Lemma 3.2, the condensed

determinantal expressions of projectors AA% )S

Theorem 3.2. Let A, G, E be as in Theorem 8.1. Then
(a) The matriz equation (GA + E)X = GA has the unique solution X =
AS‘,? )SA which is given by
det((GA+ E)(i — d;))
det(A)
where d; is the jth column of GA.

(b) The matriz equation X (AG+FE) = AG has the unique solution X = AA%?’ )S
which is given by

det((AG + E)(dT — 7))
det(A)

where d7 is the ith row of AG.

Proof. (a) From Theorem 2.1, we know that

— (GA+ E)"'GA = (GA),GA+ E,GA = AZLA.

Employing Lemma 3.2, we get (3.3). In a similar manner, we can establish (3.4)
by using of Theorem 2.2. g

and Ag )SA are given as follows.

(Ag'?)SA) i,j = 3 (7:=172v"'7n;j=1’27“'7n)’ (33)

(AA’EI?)S) 4 = ( - 1 2 7j = 1,2a"' 7m)7 (34)

As the corollary of Theorem 3.2, we can get condensed determinantal expres-
sions of the projectors AAT, ATA, AAy, AzA.

4. Algorithm

In this section, we present a method for computing the solution of matrix
equation (1.2) based on Theorem 2.3. This gives the uniform method for com-
puting the special cases (2.6) and (2.8).

First of all, we need an algorithm for computing the basis of N(A) [2].

A matrix H € C™*™ is said to be in Hermite echelon form if its elements h;;
satisfy the following conditions:

1. hij:O,z'>j,

2. hy; is either O or 1,

3. if hy; = 0 then hy = 0 for every k, 1 < k < m,
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4. if h;; = 1 then hy; = 0 for every k # i.

For a given matrix A € C™*™, the Hermite echelon form H4 obtained by
row reducing A is unique; N(A) = N(H4) = R(I — Hy4) and a basis for N(A)
is the set of nonzero columns of I — H 4.

Algorithm 1. Let GA € C™*™. This algorithm is designed for computing
U € C™* ") whose columns form a basis for N(GA).

1. Row reduce GA to its Hermite echelon form Ha 4.

2. Form I — Hg s, and select the nonzero columns w1, ug, -+ , Um—r from this
matriz, U = (u1,u2,+* ,Um—r). In the same manner, we can obtain the basis
matrices of N((GA)*), N(BG) and N((BG)*).

Algorithm 2. 5 5
1. Formulate GA+ E, BG+ F and GDG.
2. Execute elementary row operations on the pair

(GA+E, GDG)
and transform it into
(1. AfDG ).
3. Ezecute elementary row operations on the pair
((BG+F)T, (afsD&)T )
and transform it into
2 2
(1 RspBZ)" ).

5. Conclusion Remark

In this paper, we present condensed Cramer rule for the solution of restricted
matrix equation. The condensed Cramer rules of this paper are different from
those in [2] because the (UV)~! is not employed in our results which is important
in numerical computation.
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