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1. Introduction

The notion of duality for generalized linear fractional programming problem
with point-functions was initiated by Von Neumann [10] in the context of an
economic equilibrium problem. Recently, various optimality conditions, duality
results, and computational algorithms for several classes of generalized fractional
programs have been appeared in the related literature. A fairly extensive list of
references pertaining to different aspects of generalized fractional programming
problems is given in [14, 15].

In this paper, we consider the following discrete minmax subset programming
problem:

N F(T)
(P) Minimize Joax. G

subject to H;(T) <0, je M, T € A",

where A" is the n-fold product of o-algebra A of subsets of a given set X,
F,,Gi,i € K ={1,2,...,k} and H;, j € M = {1,2,...,m} are real-valued
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functions defined on A", and for each i € K, F;(T') > 0 and G;(T) > 0 for all
T € A™ such that H;(T) <0, j € M.

Zalmai [11] established necessary and sufficient optimality conditions and var-
ious duality results for (P). A Lagrangian-type dual problem was constructed
for (P) in [12] via a Gordan-type transposition theorem and appropriate dual-
ity results were proved. Preda [9] extended the concept of p-convexity [11] to
(F, p)-convexity and obtained duality theorems. Bhatia and Kumar [3] derived
sufficient optimality conditions and duality results for different combinations of
the problem function by using p-convexity. In [2], Bector and Singh discussed op-
timality and duality theorems involving generalized b-vexity assumptions, how-
ever, the Lagrangian-type dual problem was discussed in [5]. Lai and Liu [6]
presented parameter-free necessary and sufficient optimality conditions for (P).
They constructed also two parameter-free dual models and discussed duality re-
sults. Zalmai [14] obtained nonparametric sufficient optimality conditions and
duality results for minmax programming problems under generalized (F, p, 6)-
convexity assumptions. A number of parametric and parameter-free sufficient
optimality conditions and duality results were discussed in [15] under generalized
(F,a, p,8)-V-convexity [13]. Recently, Ahmad and Sharma [1] derived sufficient
optimality conditions for a multiobjective subset programming problem under
(F,a, p, d)-type I functions.

In this paper, motivated by Zalmai [14, 15] and Mishra [7], we present para-
metric and parameter-free sufficient optimality conditions for (P) under gener-
alized (F, , p, )-V-type-I n-set functions. Moreover, appropriate duality theo-
rems are proved for parametric and parameter-free dual models of (P).

2. Notations and preliminaries

Let (X, A, 1) be a finite atomless measure space with L1(X, A, u) separable,
and let d be the pseudometric on A™ defined by

2

dT,Y)= | Y W(LAY,)| , T, Y, €A pe N={1,2,...,n},
pEN

where A denotes the symmetric difference; thus, (A", d) is a pseudometric space.
For h € Ly(X, A, 1) and S € A with characteristic function xs € Lo (X, A, ),
the integral [¢h dp will be denoted by (h, Xs).

Corley [4] introduced the notion of differentiability for n-set functions as:

A function F : A — R is said to be differentiable at T™, if there exists
DF(T*) € Li(X, A, i), the derivative of F' at T*, such that for each T € A,

F(T) = F(T*) + (DF(T"), xr = x1+) + Vr (T, T"),

' . . VF (Ta T*)
. R R ) g,
where Vp(T,T") is o(d(T,T")), that is,  lim d(T,T*)
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A function G : A" — R is said to have a partial derivative at T* = (T}, T3,
..., T}) € A™ with respect to its pth argument, if the function

F(T,)=G(TY,... ,T;_l,Tp,T;H,... 1)
has derivative DF(T;), p € N; in that case, the pth partial derivative of G at
T* is defined to be D,G(T*) = DF(T;), p€ N.

A function G : A™ — R is said to be differentiable at T*, if all the partial
derivatives DG,(T*), p € N, exist and

G(T) = G(T*) + > _(DGy(T*), xr, — x13) + Wa(T, T%),
peEN

where W (T, T*) is o(d(T, T*)) for all T € A".
It was shown in [8] that for any triplet (T,Y,)\) € A x A x [0,1], there exist
sequences {T;} and {Y;} in A such that

xr, 5 vy and xv, % (1~ Nxn\r (1)

imply
XTUYiU(TAY) 2 xr + (1— Ny, @)
where “ denotes weak* convergence of elements in Loo(X, A, p), and T\ Y is

the complement of T relative to Y. The sequence {Vi(A\)} = {T, VY, U(TNY)}
satisfying (1) and (2) is called the Morris sequence associated with (T,Y, \).

Definition 1. A function F': A" — R is said to be (strictly) convex if for every
(T,Y,\) € A" x A™ x [0, 1], there exists a Morris sequence {V4(})} in A" such
that

limsup F'(Vi(A) (<) £ AF(T)+ (1 - A)F(Y).

k=00

It was shown in [4, 8] that if a differentiable function F': A™ — R is (strictly)
convex, then

F(T) (>) 2 F(Y)+ ) (DF(Y), x1, —xv,) VI,Y € A™.
pEN

Definition 2. A function F(T,T*;-) : L}(X, A, u) — R is said to be sublinear
with respect to its third argument, if for fixed T, T* € A", and for every f,g €
P(X, A, ) and ¢ € By = [0,00),

FT,T% f+9) < F(T,T f) + F(I,T 9)
and
F(T,Tcf) = cF(T, T f).
Consider the following generalized subset programming problem:

(P1) Minimize max F;(T)
1<i<k

subject to T € X,,
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where X, = {T € A" | H;(T') <0, j € M} denote the set of all feasible solutions
of (P).

The following definitions [7] are needed in the sequel:

Let F(T,T*;-) : L}(X, A, 1) — R be a sublinear functional, 6 : A™ x A" —
A™ x A" be a function such that T # T* = 6(T,T*) # (0,0) and let the
functions F : A® — R* and H : A* » R™ with components F;, i € K, and
H;, j € M, respectively, be differentiable at T € A".

Definition 3. (F, H) is said to be (F, a, p, 6)-V-type-I at T* € A", if there exist
vectors o = (al,0d,...,ak,02,0%,...,02) and p = (pl, 0, ..., Pk, p%, 0%, ...,
p%,) € RFt™, where of o : A" x A" — Ry \ {0}, and p},p3 € Rfori € K, j €
M, such that for each T € X,, and foralli € K, j e M
F(T) - F(I*) > F(T, T al(T, T")DF,(T*)) + pld*(8(T, T")),
—H;(T*) > F(T,T*;a2(T,T*)DH;(T*)) + p3d*(8(T, T*)).

Definition 4. (F, H) is said to be (F, @, g, §)-V-pseudoquasi type-I at T* € A",
if there exist vectors & = (a},a3, ... ,a},a%,a3,...,82,) and p = (p*, p°) € R?,
where &f,a2 : A" x A" — Ry \ {0} fori € K, j € M, such that for each T € X,

F (T, ™% DF,-(T*)) > P OT,T*) = Y GIF(T) 2 Y atF(T™),

€K iEX €K

jeEM jEM
If in the above definition, the first inequality is satisfied as

F <T, T*; ZDE(T*)) > -ptd* (0T, T) = > & F(T) > Y alFy(T™),

i€EK €K i€EK

- ) &H(T)<0=F (T, ™). DHj(T*)) < —p*d*(8(T, T*)).

then we say that (F, H) is (F, &, p, 6)-V-strictly pseudoquasi type-I at T*.

Definition 5. (F,H) is said to be (F,@&,p,8)-V-quasi strictlypseudo type-I
at T* € A", if there exist vectors & = (&i,4a3,...,8;,4a%,83,...,42,), and
p = (p*, ) € R?, where &},&% : A" x A" — Ry \ {0}, fori € K, j € M, such
that for each T € X,,

Y EFR(T) <Y &GFT)=>F (T, Iy DFi(T*)> < —ptd*(0(T, T)),

i€k €K €K
FT,1%) " DHy(T*) | > -p*dX0(T,T%)) = — Y G2H;(T") > 0.
jeM JjEM
If in the above definition, the first inequality is satisfied as

Y GF(T) <Y &F(T") = F (T, ™y DFi(T*)> < —prd*(O(T, T)),

ieK iEK i€K
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then we say that (F, H) is (F, &, p, 6)-V-prestrictquasi strictlypseudo type-1 at
T,

We next recall a set of necessary optimality conditions and other related
results which form the basis for our discussion of sufficiency criteria for (P).

Theorem 2.1 [11]. Assume that F;, G;, 1 € K, and Hj, j € M, are differen-
tiable at T* € A", and that for each i € K, there exists T* € A™ such that
Hy(T")+ Y (DpH;(T"), xs — x15) <0, j € M. (3)
pEN
If T* is an optimal solution of (P), then there exist \* € R, p* € U =

{u eRE Y = 1}, and v* € RT such that
i€K

> <Z HEIDpFUT*) = X DpGi(TH)] + )y vy DpHy(T™), xr, XT;> >0,

pEN \i€K JEM
VT e A",

WIF(T*) = MGy(T*) =0, i€ K, vH;(T*) =0, j € M.

For brevity, we shall henceforth refer to an T* € X satisfying (3) as a regular
feasible solution of (P).

It is easily seen that one obtains the following parameter-free version of Theo-
rem 2.1 by eliminating the parameter A* and redefining the multipliers associated
with the inequality constraints.

Theorem 2.2. Assume that Fi, G, 1 € K, and H;, j € M, are differentiable
at T* € A™. If T* is a regular optimal solution of (P), then there exist up* € U
and v* € RT such that

> <Z pD(T* W) DpF(T™) = O(T*, i) DpGu(TH] + Y v DpH(T),
peEN \i€K jEM
XTp —XT;> >0, VT ¢ Ana
pi (DT, p)Fi(T™) = ©(T, w7)Gi(T™)] = 0, i € K,
ry = Fi(T*) _ OT*0")  aprimey o
) = B8 ) ~ Ty ) =0 seM
where O(T*, u*) = 3 ptFi(T*) and T(T*, p*) = > piGi(T™).
€K €K
Finally, we state following lemma that provides an alternative expression for
the objective function of (P).
Lemma 2.1 [11]. For each T € A", one has
max E(T) — max Z,-EK NiFi(T)
1isk Gi(T)  weU 3 ie g iGi(T)
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In overall treatment of sufliciency and duality theorems, it is assumed that
the functions F;, G;, i € K, and H;, j € M are differentiable on A".

3. Parametric sufficient optimality conditions

In this section, we establish the parametric sufficient optimality conditions
for (P). For stating optimality Theorems 3.2 and 3.3, we use the real-valued
functions B;(-, A*, u*) and C;(:,v*) defined, for fixed A*, u*, and v* on A", and
forallie K, 7€ M by

Bi(T, \*, p*) = pi[Fi(T) — A*Gy(T)], and C;(T,v") = viH;(T).

Theorem 3.1. Let T* € X, and let there exist u* € U, v* € RT and \* € Ry
such that

F (T, T* Y uf[DF(T*) = M*DGi(T")] + Y V;DHj(T*)) >0, VT €AY,

€K jeM
(1)

B [F(T") = X Gy(T")] =0, i € K, (2)

ViH)(T*) =0, j € M. (3)

If

(Z) [(Fl(')_)‘*Gl(')’ cee 7Fk(‘)_"\*Gk('))7 (Hl(')v cee >Hm())] i (]:a a, p, 0)'
V-type-I at T*,

(i) al=aj=...=a} =«

(i) X wipi + X vipy 20,
i€EK jeEM

then T* is an optimal solution of (P).

Lot >

=ad=...=a2 =6, and

Proof. The inequality (1) along with the sublinearity of 7 implies

F (T, T* ) u;[DFy(T*) - ,\*DGi(T*)]> +F{T,T%; ) v;DH;T") | >0.
1€K jEM
(4)
By hypothesis (i), we get
(F(T) — X Gi(T)) — (Fi(T™) = X*Gi(T™))
> F(T,T*; 0j(T, T*)[DF;(T*) = »*DGi(T)]) + p{d*(6(T, T*)),i € K,
—H;(T*) > F(T,T*; o3(T,T*)DH;(T*)) + p3d*(6(T, T*)), j € M.

On multiplying the first inequality by u* > 0, second by v* > 0, and using (2),
(3) and (ii), we obtain

wi (Fy(T) = NGi(T)) > F(T, T 6(T, T )u; [DFi(T™*) — A*DGi(T™)])
+utprd?(0(T, T)), i € K,
0 > F(T,T*;§(T, T*)v; DH;(T*)) + vj p5d*(0(T, T*)), j € M,
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which on being summarized yield

3w (F Gi(T)) > F (T T*6(T,T*) Y wi[DF(T*) - /\*DGi(T*)]>
ieK ieK
+F | T,T%56(T,T*) Y v DH;(T*) | + | D _wiot + > vip o(T, T*)).
jeM €K jEM
This inequality in view of (iii), (4), 8(T,T*) > 0, and the sublinearity of F gives
* ) > X
E%TT* ~NGi(T)) 20
As §(T,T*) > 0, the above inequality reduces to
S B (FAT) = N Gi(T) > . (5)
€K

Now from Lemma 2.1, we have

F(T) >iex WiFi(T) > > ek W Fi(T)

T = Imax = max > " Z )\*, 5 .

¢( ) 1<i<k G; (T) wel EiEK ,uiGi(T) EiGK I Gi(T) (by ( )() )
6
Hence, in view of (2) and (6), we conclude that T is an optimal solution of
(P). o

Theorem 3.2. Let T* € X, and let there exist p* € U, v* € R and A\* € Ry
satisfying (1) to (3). If

(@) (Bl A %)y oy By Ay 1%)), (Co(5 v*), -+, Ca(, v))] s (F @, 5, 0)-
V-pseudoguasi type-I ot T*, and
(@) p' +p* >0,
then T* is an optimal solution of (P).

Proof. The inequality (3) and a3(T,T*) > 0,5 € M imply

> (T, T v Hy(T*) = 0. (7

JEM
From (7) and hypothesis (i), we obtain
FT,T% Y viDH{(T*) | +p*d*(6(T, T*)) < 0. (8)
jeM
The inequality (8) along with (4) and hypothesis (ii) yields

F (T, T z p[DE(T*) ~ )\*DGi(T*)]) + ptd*(6(T, T*)) > 0,
ieK
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which because of hypothesis (1) gives
> &G (T (F(T) = X'Gi(T)) 2 D 63 (T, T )i (FiT*) = X*Gi(T™)).
ieK €K

From the above inequality and (2), we have

> @} (T, T*)pi (Fi(T) = X*Gi(T)) > 0. (9)
iEK
By virtue of Lemma 2.1, we have

ax Fl(T) max &zl(TvT*)Fz(T) (CLS
<k Gy(T) — 1<i<k a3 (T, T)G4(T)

— max Y ek it (T, T*)Fy(T)
WoS 3ok e (T, T)Go(T)
al (T, T*Fy(T
> ZZGK /1‘2 ( *) ( ) > )\*’ (by (9)) (10)
Z'LEK .U“L % (T T )G (T)
Hence, in view of (2) and (10), we conclude that T™* is an optimal solution of
(P). O
The proof of the next theorem is analogues to Theorem 3.2, and hence being
omitted.
Theorem 3.3. Let T* € X, and let there exist u* € U, v* € RY and A" € Ry
satisfying (1) to (8). If
(Z) [(Bl(" ’\*a /1’*)’ tee aBk(" A%, /‘*»7 (Cl('7 V*)? s 7Cm('7 V*))] is (]:a a, p, 9)'
V-prestrict quasi strictlypseudo type-1 at T, and
() p*+7* >0,
then T* is an optimal solution of (P).

P(T) = s & (T, T*) >0, i€ K)

In order to prove next sufficient optimality theorems, we introduce some ad-
ditional notations. Let {I, [1,..., I} be a partition of the index set M, thus
Ig C M foreach € {0,1,...,7}, IgN I, =0, if B # v and Up_y Ig = M. For
fixed \*, p* and v*, we define the real-valued functions on A" as:

E(T N ut,v*) = i | Fi(T) = NGi(T) + > v Hy(T)| , i € K,
j€l,
and

Lo(T,v*) =Y viHy(T),f=1,2,...,r
jelg
Theorem 3.4. Let T* € X, and let there exist u* € U, v* € RT and \* € Ry
satisfying (1) to (8). If
(4) [(gl(" A p ), (e AT, v7), (L, v7), - ’E'P('a V*))] is (]:’ a,
p,0)-V- pseudoquasi type-I at T™, and

(i) p' +Zp2>0
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then T* is an optimal solution of (P).

Proof. From (3) and a3(T,T*) > 0,j € M, we have Z a3 (T, Ty Hy(T*) =
Jj€lp
0,3=1,2,...,r, which along with hypothesis (i) gives

F (T, T, Z V;DHj(T*)> < —phd*O(T,T*), B=1,2,...,T. (11)

J€lp

By (1) and the sublinearity of F, we obtain

€K j€ls

F (T, TS W [DF(T*) - \*DGy(T*)| + ) v; DH; (T*))

+ZT:]-‘ (T,T*; > V}‘DHJ'(T*)> 20,

p=1 Jels

€K jel,

F (T, T Y Wi (DF(T*) — X*DGy(T*)| + Y V;DHj(T*))

Z o(T,T*)) >0, (by (11)).

As hypothesis (ii) holds, and > p¥ =1, the above inequality becomes
i€K

FIT,1% Y s [DF(T*) = X DGy(T*) + Y v DHy(T™)]
€K Jjels
+ptd?(6(T, T*)) > 0. (12)
Inequality (12) together with hypothesis (i) implies
3 GHT, THET, X, u*,v) 2 Y & (T, T)E(T", A%, w*,v*),
icK €K
which in view of (2) and (3) yields

> & (T, T I:Fi(T) —NG(T) + Y U;Hj(T)jl >0.

€K jelo
Since T € X, and v* € RT?, we get
> aHT, Tl (FUT) - N Gi(T)) 2.6,
i€K
which is identical to (9). Therefore, following the proof of Theorem 3.2, we
conclude that 7* is an optimal solution of (P). O
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Theorem 3.5. Let T* € X, and let there exist u* € U, v* € RT" and \* € Ry
satisfying (1) to (3). If

(Z) [(51(, A, /L*’ V*)’ cees 5k(', Y, ,U/*’ V*))a (El(" V*)), v 7£'P('7 V*))] is (f’ &,
P, 0)-V-prestrictquasi strictlypseudo type-I at T*, and

(i) p* + Z 72 >0,

then T* is an optimal solution of (P).

Proof. The proof follows on the similar lines of Theorem 3.4. g

4. Parameter-free sufficient optimality conditions

In this section, we discuss parameter-free versions of the parametric sufficient
optimality conditions for (P) obtained in Section 3. For stating optimality The-
orems 4.2 - 4.5, we use the functions C;(-,v*) and Lg(:, v*) defined in Section 3,
and the real-valued functions A;(-, T*, p*) and IL;(-, T*, p*, v*) defined, for fixed
T*, p*, and v* on A", and for all ¢ € K, by

A(T, T, p*) = i [D(T, ") Fi(T) - (T, w*)Gi(T)),
and
IL(T, T, 4", v") = i [N, w")F(T) = O(T", u*)Gi(T) + Y | vi Hy(T)).
jel,
Theorem 4.1. Let T* € X, and let there exist u* € U and v* € R such that

F (T, T i [T(T*, w*) DFi(T*) — O(T*, p*)DGo(T*)] + V;DHj(T*))

ieK jeEM
>0, VT e A", 1)
, F(T*) oI, pur)
W) = 0 G ~ T ®)
viH;(T*) =0, j € M. (4)

If
(1) [(F(T*a u*)Fl() - @(T*,,U,*)Gl('), s aF(T*7 .U'*)Fk('> - G(T*’N*)Gk(')),
(Hi(:)y -y Hn(4))] s (F, o, p, 9)—V-type Iat T*

() al=a}=...=at =al=di=...=a? =0, and
(i6) 3 pioi+ X vies 20,
i€K JjEM

then T* is an optimal solution of (P).
Proof. The inequality (1) along with the sublinearity of 7 implies

(T T i [D(T*, w*) DF(T*) - @(T*,N*)DGi(T*)]>

i€EK
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o7 (T, Y V;DH].(T*)) 20 ®

JEM
By hypothesis (i), we get
(D(T*, w*)Fi(T) — O(T*, p*)GH(T)) - (D(T*, w)F(T*) — O(T*, w*)G(T"))
> F(T,T*; of (T, )0 (T*, w*) DF;(T*) - O(T*, u*) DG (T*))) + o1 d* (0T, T™)),
~H(T) > FT5 (T, T)DH(T) + (0T, T7)i € K. € .
On multiplying the first inequality by p* > 0, second by v* > 0, and using (2),
(4) and (ii), we obtain
[T (F(T*,u VFi(T) — ©(T*, p)Gi(T)) = F(T,T*; (T, T*)ps [T(T™, w*) DF3(T™)
~(T*, W*)DG(T™))) + pipi d*(O(T,T")), i € K,
0> F(T, T 8(T, T*)v; DH;(T*)) + v} p2d*(8(T, T*)), j € M.
Taking summation over 1 € K and j € M, respectively and then adding to
obtain

Y u T, 1)) - (T, w)Gi(T)
€K
> F(T,T*6(T,T*) Y _ pi [D(T*, u*) DF(T*) — O(T*, u*) DGy(T*)))
icK
FF(T T8I, T) Y v DH;(T) + () pipk + Y v p2)d*(0(T, T*)),
jeM €K JEM
which in view of (5) (iii) §(T,T*) > 0 and the sublinearity of F gives

Z (T, T%) T 7oy (LT )T = O(T7, 17)Gi(T)) 2 0.

Since 6(T, T*) > 0, the above inequality becomes
S 4 (DT, 5)F(T) - O(T*, w)G(T)) 2 0. ©)
i€K

From Lemma 2.1, we get

Fy(T) Yiex 1Fi(T)
W) = B8 T %Um

ZzeKl‘:F(T) oT* 1) .
2 Sk HGHT) © T ) = ¢(T™), (by (6) and (3)). (7)

Hence T* is an optimal solution of (P). O

Theorem 4.2. Let T* € X, and let there exist u* € U and v* € R satisfying
(1) to (4). If

(@) [(A1(G T p*), o AT %), (Ci(, v™), - o, G-, %)) 48 (F, &, p, 8)-
V-pseudoquasi type-1 at T™, and
(i) 7' +p° 20,
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then T* is an optimal solution of (P).
Proof. Following the proof of Theorem 3.2, we get

F (T, T*; Z V;DHj(T*)) + p2d2(8(T, T*)) < 0,

jEM
which by the virtue of (5) and hypothesis (ii) implies
F,T% Y i (DT, 1)DF(T*) - O(T*, 1) DGH(T)) + 5 dX(O(T, T*)) > 0.
€K
This inequality together with hypothesis (i) gives

S & (T, T} (DT, w) F(T) - O(T*, u)Gi(T))

ieK
> & (T, T (C(T", w)F(T*) = (T, u")Gi(T7)),

icK
Y A (T, T )i (DT, w*)F(T) — O(T*, 1*)Gi(1)) 20, (by (2)).  (8)
ieK

By Lemma 2.1, (3) and (8), it follows that
¢<T>51123§k§"(<§)> = mﬁ%ﬁ% (as &(T,T7) > 0,1 € K)
— max Zz@K Nz—l(T T*)F (T)

N S e e 0T, T)CA(T)
> ZiEK/’(‘i_;’(T’T )Fl( ) > @(T s H ) =1/1(T*)
Yiek 1o (T, T*)G(T) — T(T*, pux)
Hence ¥(T) > ¢(T*), which shows that T* is an optimal solution of (P). O

Theorem 4.3. Let T* € X, and let there exist u* € U and v* € RT satisfying
(1) to (4). If
(7') [(Al('7T*, N*)7 tee ’Ak('7 T*7 “*))7 (Cl('7 V*)’ s ,Cm(-, V*))] is (]:: 6‘7 ﬁ’ 6)'
V-prestrictquasi strictlypseudo type-I at T™, and
(@) p' +p* 20,
then T* is an optimal solution of (P).

Proof. The proof follows on the similar lines of Theorem 4.2. O

Theorem 4.4. Let T € X, and let there exist u* € U and v* € R satisfying
(1) to (4). If
@) [T, T* p* v, (T, 0%, v*), (L1 (5 v%), oo Lo(4, v%))] 48 (F,
&, p, 0)-V-pseudoquasi type-I at T*, and

A
(@) p'+ 35 520
A=1
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then T* is an optimal solution of (P).

Proof. Following Theorem 3.4, one can get the inequality

FAT,1% Y viDH(T*) | < -5 (BT, T), B=1,2,...,7.  (9)
jelp
The inequality (1) and the sublinearity of F give

(T Y i [D(T*, ") DE(T") - O(T *,u*)DGf(T*)HZV;‘DHj(T*))

€K jel,

T
+ Y F 1,1 Y viDH,(T*) | 20,
B=1 jels

or

(T T*, z}:{ ui[D(T*, w*)DF(T*) — O(T*, ") DG4(T*)] + }; v DHJ'(T*))
i€ €l

Z o(T, ")) > 0, (by (9)),

which in view of hypothems (i), and Y p; =1 yields that

€K
F(T,T% S [0, 5" )DF(T*) ~ O(T", u*)DGi(T*) + Y v; DH;(T™)))
€K j€lo
+5'd*(O(T,T7)) > (10)

The inequality (10) along with hypothesis (i) 1mphes
N &} (T, T (T, T, ", v* ) > Y ai (T, TIL(T", T, u*, V"),
€K €K
which by (2) and (4) gives
3 & (@, T DI, ) FAT) — O(T*, w)GH(T) + Y v Hy(T)]) 2 0
ieK j€I,
Since T € X, and v* € R, we get

37 GHT, T (U(T*, w)F(T) — 6(T", 1*)Gi(T)) 2 0.

€K
Now, following the proof of Theorem 4.2, we obtain the required condition that
T* is an optimal solution of (P). O

Theorem 4.5. Let T* € X, and let there ezist p* € U and v* € RT satisfying
(1) to (4). If

(2) [(Hl('7T*’ :u’*v V*)’ e 7Hk('7T*a 1 V*))v ([’1('7 V*))’ ce 7£T('a V*))] is (}-: a,
p, 0)- V-prestrictquasi strictlypseudo type-I at T*, and
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T
sl =2
(41) p* + ;62=:1 Pg 2 0,
then T* is an optimal solution of (P).
Proof. The proof is analogues to that of Theorem 4.4. O

5. Duality model 1

In this section, duality theorems are proved for the following parametric dual
problem:
(DI) Maximize A
subject to

F (T,Y; > w[DFE(Y) - ADGi(Y)] + ) I/jDHj(Y)) >0, VT e A", (1)

ieK JjEM
w(F(Y) - Gi(¥)) 20, i € K, )
VjHj(Y) 20, j€M, (3)

YeA", NeRy, ucU, veRT,
In order to prove duality theorems, we use the functions B;(-, A, i) and C; (-, v)
introduced in Section 3.

Theorem 5.1 (Weak Duality). Let T and (Y, A, p,v) be the feasible solutions
of (P) and (DI), respectively. If

(Z) [(Bl(: A P’)a SRR Bk('7 A /'L))a (Cl('7 U)a ce 7Cm('7 V))] is (}-7 a, p, 6)—V-pseudo
quasi type-1 at 'Y, and

(i5) p* + p* >0,

then P(T) > A

Proof. From (3) and a3(T,Y) > 0,5 € M, we have

=Y @(T,Y)v;H,(Y) <O0. (4)

JjEM
The inequality (4) and hypothesis (i) give
F(T,Y; Y v;DH;(Y)) + p*d*(6(T,Y)) < 0. (5)

jEM
The inequality (5) along with (1), the sublinearity of F and hypothesis (ii)
implies

F(T,Y; > w[DF(Y) = ADGi(Y)]) + ' d*(8(T,Y)) > 0,
icK

which in view of hypothesis (i) gives

Y aH (T, YV)w(F(T) = AGA(T)) 2 Y & (T, Y)m(Fi(Y) = AGo(Y)).
ieK 112724
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From the above inequality and (2), we obtain
> & (YY) m(F(T) = 2Gi(T)) 2 0. (6)
i€K

By virtue of Lemma 2.1, we have

Y(T) = max, gz((?) = 112?%6#—}%)——((—% (as al(T,Y) > 0,i € K)
_ Yiek %l ai(T,Y)F(T)
TR0 Yk al(T,Y)GI(T)
o Ziex Wioa(TY)F(T) > \ (by (6).

T Yiek witi (1,Y)Gi(T)
Hence ¢(T) > A. O

Theorem 5.2 (Weak Duality). Let T' and (Y, A, p, v) be the feasible solutions
of (P) and (DI), respectively. If

(@) [(BLCs Ay )y v+ Be(y A )y (C1(3#)y ooy Cn(ey v))] 18 (F, Gy By 0) - V- pre-
strict quasistrictlypseudo type-1 at Y, and

(i4) p* + p* >0,

then v(T) > A
Proof. The proof follows on the similar lines of Theorem 5.1. ([

Theorem 5.3 (Strong Duality). Let T* be a regular optimal solution of (P), let
F(T,T* DF(T*)) = 3} pen (Do F(T*), X1, —XT3) for any differentiable function
F: A" - R and T € A", and assume that any of the weak duality theorems
(Theorem 5.1 or 5.2) holds for all feasible solutions of (DI). Then there exist
X € Ry, p* €U, and v* € R such that (T*, \*, u*,v*) is an optimal solution
of (DI) and the objective values of (P) and (DI) are equal.

Proof. By Theorem 2.1, there exist A* € Ry, p* € U, and v* € RT such that
(T*, \*, u*,v*) is a feasible solution of (DI). Since %(T™) = X*, it follows from
the weak duality theorem (Theorem 5.1 or 5.2) that (T, A*, u*, v*) is an optimal
solution of (DI). 0

Theorem 5.4 (Strict Converse Duality). Let T* be a regular optimal solution
of (P) and let (Y*, \*, u*,v*) be an optimal solution of (DI) such that

(@) [(BL(y A", ™), o Bi(e, A% #)), (C1(v™)s o, Cl(cyv™))] s (Fy &, p, 0)- V-
strictlypseudoquasi type-I at Y™, and

(i) p' +p? > 0.

Also, suppose that, for any differentiable function F : A™ — R, F(T,T*; DF
(T*)) = 3 pen(DpF(T*), x1, — Xx12), T € A". Then Y* =T*, that is, Y* is
an optimal solution of (P), and (T*) = A*.

Proof. We assume Y* # T™ and exhibit a contradiction. Now, following the
proof of weak duality (Theorem 5.1), we get inequality (6) as strict inequality so
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that we obtain ¥(T™*) > X*, which contradicts the fact that ¢(T™) = A*. Hence
Y*=T* O
6. Duality model 11

In this section, we present more general parametric dual model by making
use of partitioning scheme introduced in Section 3.

(DII) Maximize A
subject to

F (T,Y; > w[DF(Y) = ADGy(Y)] + ijHj(Y)) >0, VT eA", (1)

i€K JEM
p(FiY) = AGu(Y) + Y v Hy(Y)) 20, i€ K, (2)
Jj€ls
> VviH;(Y) >0, =1,2,...,7, (3)
Jj€lp

YeA", e Ry, peU, veRT.
We use the functions &;(+, A, i, v) and C;(-, v) introduced in Section 3.

Theorem 6.1 (Weak Duality). Let T and (Y, A, p1,v) be the feasible solutions
of (P) and (DII), respectively. If

(Z) [(81(, /\7 s I/), ces ’gk('a >‘a s V))a (‘Cl(" V)a v ['7'(" V))] 8 (-7'-, &, p, 9)'V'
pseudo quasi type-I at Y, and

(#) P+ Y- 75 >0,
p=1
then (T) > .
Proof. From (3) and a3(T,Y) > 0,j € M, we have — Z d?-(T, Y)v;H;(Y) <

J€lp
0,3=1,2,...,r, which along with hypothesis (i) gives
F(T,Y; Y v;DH,;(Y)) < -3 d*(0(T,Y)), B=1,2,...,T. (4)

j€lp
By (1) and the sublinearity of F, we obtain

F(T,Y; Y w[DF(Y) = ADGy(Y)]+ Y v;DH;(Y))
€K j€l,

+ Z F(T,Y; > vDH;(Y)) 20,
=1 J€lp
F(T,Y; Y w[DF(Y) - ADGi(Y)] + Y v; DH,(Y))

ieK jel,

=Y AdO(T,Y)) 2 0, (by (4)).
f=1
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As hypothesis (ii) holds, and Y y; = 1, the above inequality becomes
icK
F(T,Y; Y wlDF(Y)=ADGi(Y)+ Y v;DH;(Y)])+ 5 d*(0(T,Y)) > 0. (5)
€K Jjel,

The inequality (5) together with hypothesis (i) implies

Y alT Y)ET M\ uv) 2 Y al(TY)E, A, p,v),
€K ieK

which in view of (2) and (3) yields

Y G Y)m(F(T) = AG(T) + Y v Hy(T)) >0

i€K i€l
Since T € X, and v > 0, we get

Y &I,V )m(F(T) - AGi(T)) > 0,
€K
Now by Theorem 5.1, we obtain 9(T") > A. O

Theorem 6.2 (Strong Duality). Let T* be a regular optimal solution of (P), let
F(T,T*; DF(T*)) = 3 e n(Dp F(T™), X, —XT;) for any differentiable function
F: A" - R and T € A", and assume that the assumptions of weak duality
(Theorem 6.1) hold for all feasible solutions of (DII). Then there exist \* €
Ry, p* € U, and v* € R such that (T*,X*, u*,v*) is an optimal solution of
(DII) and the objective values of (P) and (DII) are equal.

Proof. By Theorem 2.1, there exist \* € Ry, p* € U, and v* € R such that
(T*, \*, u*,v*) is a feasible solution of (DII). Since (T™*) = A*, it follows from
the weak duality (Theorem 6.1) that (T, A*, u*, v*) is an optimal solution of
(DII). O

Theorem 6.3 (Strict Converse Duality). Let T be a regular optimal solution
of (P) and let (Y*, \*, u*,v*) be an optimal solution of (DII) such that

(@) [(Ex(, X5 w*, %)y ER(y X5, 15, %), (L1 (4 v™), .o, Lo(-, %)) 48 (F, @,
g, 0)-V-strictly pseudoquasi type-I at Y*, and

(i) p* + p* > 0.

Also, suppose that, for any differentiable function F : A — R, F(T,T*;
DF(T*)) = 3 pen{Dp F(T*), X1, — X12), T € A™. ThenY* =T*, that is, Y*
is an optimal solution of (P), and Y(T*) = A*.

Proof. The proof follows on the similar lines of Theorem 5.4. O

7. Duality model II1

This section deals with the following parameter-free dual model for (P) and
corresponding weak, strong and strict converse duality theorems.

ZiEK wFi(Y)

(DIII) Maximize ¢(Y, p, v) = S i C(Y)
i€K HiMi
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subject to

f(T,Y;memwFi( )= BY, ))DG(Y )| + Y v;DH; Y))

€K jEM
>0, VT e A", (1)
Y, ) F(Y) =0, p)Gi(Y)] 20, i € K, (2)
H;(Y)>0, je€M. (3)

YeA®, pel, ve R

We use the functions A;(-, T, 1) and C(-, v) introduced in Section 4. Through-
out this section, we assume that ©(Y, ) > 0 and I'(Y, ) > O for all Y and p
such that (Y, u, v) is a feasible solution of the considered dual problem.

Theorem 7.1 (Weak Duality). Let T and (Y, s, v) be the feasible solutions of
(P) and (DIII), respectively. If

(Z) [(Al("Ta l‘)7 s ’Ak("T’ ;L)), (Cl(‘a V)a cee ,Cm(', V))] is (]:? a, p, 6) - V-
pseudo quasi type-I at Y, and (i) p* + p? > 0, then Y(T) > o(Y, p,v).
Proof. By (3) and a(T,Y) > 0, j € M, we get — Y _ a3(T,Y)y; H;(Y) <0,

JEM
which along with hypothesis (i) yields
F(T,Y; Y v;DHi(Y)) + p*d*(9(T,Y)) < 0. (4)
jeM
The inequality (4) together with (1), sublinearity of F, and hypothesis (ii) im-
plies
FT,Y; Y wlD(Y, w)DF(Y) — (Y, ) DGi(Y))) + P d*(6(T, ) 2 0,
€K

which by virtue of hypothesis (i) gives
3 a{(T Y )T (Y, )FA(T) - O(Y, w)Gi(T))

€K
> Y (T, Y)u(T(Y, p)Fi(Y) = O(Y, w)Gi(Y)),
€K
Y &I Y )T (Y, w)F(T) — O(Y, p)G(T)) > 0, (by (2)). (5)
€K
From Lemma 2.1, we have
Fi(T) a;(T,Y)Fi(T)

al(T,Y)>0,icK)

W(T) = 18X ) 28K 3T V) GL(T) (as

o T @S T YRD)
€0 ik (T, Y)GAT)
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s Siex HalTY)F(T) _ O(¥,p)
T Yiex 4 (TY)G(T) ~ T(Y, )’
o(Y, p)
L(Y,p) = ¢(Y, p, v). O
Theorem 7.2 (Weak Duality). Let T and (Y, p,v) be the feasible solutions of
(P) and (DIII), respectively. If
(1’) {(A1(7 Ta M), oo 7Ak(',T> ll)), (Cl('a V)a s 7Cm(" y))] is (‘Fa d7 ,5, 6) -V-
prestrict quasistrictlypseudo type-I at Y, and
() p* + p* 2 0,
then ¥(T) > $(Y; p, v).

Proof. The proof follows on the similar lines of Theorem 7.1. a

(by (5))-

Hence ¢(T) >

Theorem 7.3 (Strong Duality). Let T* be a regular optimal solution of (P), let
F(T,T*; DF(T*)) = 3 e n{DpF(T*), X1, ~XT3) for any differentiable function
F: A" > R and T € A", and assume that the assumptions of any of the weak
duality theorems (Theorem 7.1 or 7.2) hold for all feasible solutions of (DIII).
Then there exist p* € U and v* € RT such that (T*, p*,v*) is an optimal
solution of (DIII) and the objective values of (P) and (DIII) are equal.

Proof. By Theorem 2.2, there exist u* € U and v* € R such that (T, u*, v*)
is a feasible solution of (DIII). Since ¥(T™*) = ¢(Y*, u*,v*), it follows from
the weak duality theorem (Theorem 7.1 or 7.2) that (T*, u*,v*) is an optimal
solution of (DIII). O

Theorem 7.4 (Strict Converse Duality). Let T* be a regular optimal solution
of (P) and (Y*, u*,v*) be an optimal solution of (DIII) such that

(@) (AL, T p%)y o AR (T, ), (Co (s, v*), oo, Con (-, v)] 48 (F, &, 5, 6) -
V - strictlypseudo quasi type-I at Y™, and

(1) p' +p* > 0.

Also, suppose that, for any differentiable function F : A — R, F(T,T*;
DF(T*)) = 3 pen(DpF(T*), x1, — X13), T € A*. ThenY* =T", that is, Y*
is an optimal solution of (P), and Y(T™) = ¢(Y*, u*,v*).

Proof. The proof is similar to that of Theorem 5.4. a
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