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ON THE MOMENTS OF BINARY SEQUENCES AND
AUTOCORRELATIONS OF THEIR GENERATING
POLYNOMIALS

M. TAGHAVI

ABSTRACT. In this paper we focus on a type of Unimodular polynomial
pair used for digital systems and present some new properties of them
which lead us to estimation of their autocorrelation coefficients and the
moments of a Rudin-Shapiro polynomial product. Some new results on
the Rudin-shapiro sequences will be presented in the last section.

Main Facts: For positive integers M and n with M < 2" — 1, consider
the 2" — M numbers e (M < k < 2™ — 1) which form a collection of
Rudin-Shapiro coefficients. We verify that [ZZZE} exet*t] is dominated

by (2+ vV2)v2" — M — V2.
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1. Introduction

We Shall start very briefly by mentioning the ”infrared spectrometry”. On
the instrumental optics (multislit infrared spectrometry) [3,4], Marcel Goley
introduced pairs as follows:

Given finite sequence of the same length (ag,a1,- -+ ,aq) and (bo, by, - -, ba),
suppose that A and B in C|z] are their generating polynomials, that is

d d
Alz) =) ait, Alz) =Y a2,
k=0 k=0

If |A(2)|[>+ |B(2)|? = 2(d+1) for all |2| = 1, then we say A and B form it Golay
complementary polynomial pair.

The most important type of the Golay complementary polynomial pairs are
the it Rudin-Shapiro polynomials, [7], which has been studied extensively by
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telecommunication engineers [1,8]. Setting po = go = 1, we define them induc-
tively as follows.
on—1 rym1
Pn =Pn-1+ 612 th—la dn = Pn—1 — 612 tq'n—l (TL € N) (1)

Letting l,, = 2" for every n, in what followed we will show that these polynomials
form a Golay complementary pair. Using the definition (2), we write

2 = 2" Pa-1(2)gn-1(2) + (Ipn-1(2)* + lgn—1(2)|?)
+2ln_1pn—1(z)Qn—l(z)
(IPa-1(2)* + |gn-1(2)[?) + 2Re(z" " Pr—1(2)gn-1(2))

|pn (2)

I

and
lg(2)]? = =2 P 1(2)gn-1(2) + (Jpr-1(2)]?
Hgn-1(2)%) = 2" pp_1(2)@n-1(2)
= (Ipn1(2)? + lgn-1(2)*) = 2Re(2"~* pn—1(2)gn-1(2)).
Hence

Pn(2) + |an(2)? = 2(|pn—1(2)® + |@n-1(2)[?)
22(Ipn—2(2)* + lgn—2(2)%)

2"(Ipo(2)[* + lg0(2)[?) = 2"(1 + 1).
Thus if |z| = 1, then

|pn(z)|2 + lqn(z)|2 ="t = b1 )
Thus the Rudin-Shapiro polynomials are in fact are of Golay complementary

type.
For a complex polynomial p and a positive real number g, define ||p||; by

1 27 1/q
S e ity (g
Iolle= (52 [ pteyiat)

Letting f(t) = |pn(€*)|?, we can write
2"—1
=Y e,
k=1—2n

on which the central coefficient cg (called the central frequency of f) is 2™. One
can easily verify that ||p,||3 = co and cx = c_x. Each ¢ is called an autocorre-
lation coefficient of p,. Finding the "best value” for 7, := maxi<g<on_1 |ck| is
an old problem.

Theorem 1. There exists an absolute constant C such that v, > c23m,
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Proof. Since ¢}, = ¢ for all k¥ and ¢g = 2", we have

amo1 271
IFI3=c5+2 ) lel®=(2")? +2 Z ek ?. (3)
On the other hand -
8= o [ ot =l @
One can easily show (using induction on n) that
2@ -2 <l < 52 4277,
s0 that 3 — gt “(ggrlj; < =+ 27" Thus ||ps)} is asymptotic to 5(22")

written ||pnl|f ~ 5(2%") (the ~ symbol means that the ratio of the left and right
hand sides converges to 1 as n — o0). So, by (3) and (4)

on_1
2 _ Lo oony 14 one oo\ 1ionya
> el = SUAE -2 ~ 5 52PN -2 ) = £ (@7
k=1
Therefore,
;] 2l
2 _ 25 2
LS 1|kI —Z"—IkZ:IICIcl
1 (1, 1 /(1
~ = — | Z(on
() » £ ()
1
= =(2").
S(2")
Hence v, > %(2%"). O

It is known that v, < C 924" for some absolute constant C' and it was thought
that the correct answer should be 7, < C’EL%+€ with € being any positive number
and C. is a constant depending only on ¢. But a counter example was given in
[9] that provides a particular k and a universal constant D so that |cz| > DL%".
We showed in [10] that 0.73 is optimal in upper bound case.

Next we define the class K\ as the collection of all (complex) unimodular
polynomials of degree n > 1 so that if a, € Ky, then an(z) = Yo ckz® with
each ¢y, a complex number and |c;| = 1. One can easily check that by Parseval’s
formula, fOZ” |an(e?)|2dt = 2m(n+1) and so min|a,(z)| < v+ 1 < max |a,(2)|,
where both min and max are taken over all z with |2| = 1.

We also define the class £y as the collection of all (real) unimodular polyno-
mials of degree n > 1. This class is called the set of Littlewood polynomials of
degree n. Note that the Rudin-Shapiro polynomials p, and g, are in £\. In
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1966, Littlewood, [6] conjectured the existence of universal positive constants c;
and ¢y and arbitrary large integer n such that

avn<lan(z)| <cvn (2] =1),
for some a,, € £\. The Rudin-Shapiro polynomilas satisfy the upper bound in

this condition with ¢; = v/2, but no sequence is known to satisfy the lower bound.
In fact, the best known result here is some 30 years old (see [2]), used the Barker
sequence of length 13 to show that for sufficiently large n there exist polynomials
an € Ly with |an(2)] > n®*! on |z| = 1. letting ¢ = sups sin? t/t ~ 0.73,
¢1 =+v1—cand ¢c; =+/1+ ¢ we have

cl+0<%> < |a:‘/(g)‘ S02+0<%>.

The question that how close an € K\ or an € £y can come to satisfy |an(2)| =
vn + 1 obviously is impossible if n > 1. There are various ways of seeking
such an ”approximate situation”. One way suggested by Littlewood in [6] that,
conceivably, there might exist a sequence {an} of polynomials a, € IC\ (possibly
even a,, € £y) such that (n + 1)~'/2|a,(e"*)| converge to 1 uniformly in ¢ € R.
Such sequences of unimodular polynomials are called ultraflat. More precisely,

. =zt
nlbr&mgl(n+ )7 |an(2)| — 1] =0.

Erdelyi proved the 1996 conjecture that for f,,(t) := Re(an(€*)) and 0 < ¢ < 00

we have .
)\
“fn”q ~ (W) \/ﬁ

it~ (D)
e\ G v

where I' denotes the usual gamma function.
Let p € K\ and write

and

n
p(2) =) apt,
k=0

where a; = +1 for all k. Define the conjugate reciprocal polynomial of p by
n

p*(2) := z"p(1/z). One can easily verify that p*(z) = Z Gn_k2z" and moreover
k=0

A‘ Ip(2) — p*(2)|?|dz| = 2n + o(n),

where o(n) denotes a quality for which lim o(n)/n = 0.
n—

Now if we define p(z) = p(—z), then (5)* = (—1)%9) (p*).
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Observation. Let ¢ > 2 be a fixed integer and consider a polynomial of the
form

p(z) = A1(2)Aa(z) - - Ag(2),
where Ay, € {pn,Pn,P%, P5} and where py is the n** Rudin-Shapiro polynomial
of degree 2™ — 1. Hence

is a unimodular polynomial. Moreover ||p||; < cL# (the proof is similar to that
Ipnllc < V2L7 shown in [5)).

Case 1: Suppose that

(1) ¢ is an even integer and

(ii) A € {pn,Dn, Py, ps} implies that A* € {pn, P, 1}, P}

The central coefficient of p here is the same order as ||p|| and for every k there
exist 9; > 0 and ¢, both depended only on ¢ so that

be] < ¢g24749). (5)
Of course the central coefficient k = 0 case excluded in (5).

Case 2: Suppose that niehter (i) nor (ii) in case I hold. Then again for every
k there exist d; > 0 and ¢4 both depended only on ¢ so that

max  |bg] < ¢ 2770,
0<k<q(27—1)

2. The main Result

In what follows by €, (s < 2" — 1) we mean the st* coefficient of any Rudin-
Shapiro polynomial p,. Since by (1), the first half part of p, is indeed p,—1,
it make sense to consider a fixed sequence {e1,e€2,---} C {+1,—1} called the
p-Rudin-Shapiro sequence. Similarly {61,402, -} is called the q-Rudin-Shapiro
sequence.

Theorem 2. Suppose that m < n be positive integers, N = wy, 2™+ -+ wp2° #
0, where wy = 0 or 1 and let 0 < M < 2". Suppose that {€1,€2, -} and
{61,082, -} are p & g-Rudin-Shapiro sequence. Then

N m
(a). Zeke"kt <1+ Zwllpll <(W2+1)VN -1.
k=0 1=0
N ) m
(b). Z(Ske’kt <1 +Zwl|p¢].
k=0 =0

2%-1

Z ekeikt

k=M

©. <Q@+VIVT M -2
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Lemma 1. Let m be a positive integer and suppose that wo, w1, ,wm not all
zeros take values of 0 and 1. Then

m m
Z S \f-{-l Zwk2k —
k=0 k=0

m m
Proof. Define M = Zwkﬁ and N = Zwk2k and note that we may assume
k=0 k=0
wm = 1. Ifwy = 1for all k, then M = (v/2+1)(2(mtD/2-1) and N = 2m+1 — 1.
Therefore

M = (V2+1)(WN+1-1)=(2+1)(N+VN+1-vVN-1)
< (V2HUVN+(V2+1)(V2-2)
(vV2+1)VN - V2.

So, assume that wy = 0 for some & < m.

Case 1. wy, = wm—1 = 1. In this case, let » > 1 be so that w,,, = wp—1 =
-+=w, =1and wy—1 =0. Then

M<(V2+1) [(2%-1)2%+2%‘—1], N> @ -1,
where [ =m — 7+ 1> 2 so that

M++2+1 25 — 1427
L (Vo) x
VN ( ) ol —1
Setting ¢ = 2% > 2, wehave x — 1 + _Tl < v/22 =1 which means z2 — (2 -
V2)z+(3-2v2)/2 < 22— 1 or (5—2v?2) < 2(2 — v/2)z, which is the case since
T > 2. ThusM+\/§+1<(\/§+1)\/N.

Case 2. wm =1, Wm—1 = Wm—2 = 0. In this case, we of course assume m > 2.
Thus

2% + (V2+1)(2"T - 1)
1+ (V2+1)/22%F — (V2+1)
< (V2+1)VN - (V2+1).

Case 3. wpm =1, wm-1=0, Wm_o=1and wy_3=0. Soif M > 3, then

M

IA

M<2% 427 £ (V24 1)(@7T - 1),
N >2™m 2™ 2 = (8 +2)2™3,

M+v2+1 _2v24+V2+(V2+1)  4v2+1
Nic < Vi /10 <V2+1.
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Case 4. wm =1, wp-1 =0, Wm-2 =wm—s = 1. Then

M+\/§+1< 2% +(V2+1)27 :4\/§+2<\/§+1.
\/N \/2m+2m—2+2m——3 \/ﬁ

Case 5. wy, =1 and wg =0 for all k < m. Then

M=2% <(V2+1)2% - V2= (vV2+1)VN - V2.

So the proof of lemma is complete. 0

Proof of theorem. Using the complementary condition (2) and lemma 1, we first
prove the second inequality in (a) as follows:

m m
L+ wlpl < 14V2Y w2
=0 =0

1+V2[(V2+ )VN - V)]
V2(V2+1)VN - 1.

Now the first inequality in (a) is trivial for N = 0,1. Suppose N > 1 and the
result is true with IV replaced by NV — 1. Let w; be as above, where w,, = 1. Let
the positive integer  be the least one with wy, = wm-1 = -+ = w, = 1. Noting
2™ < N < 2™ we have

IA

It

N 2m 1 N
Zekeik‘t S Z eke’lkt o+ Z ekeikt
k=0 k=0 k=2m
N-2™
= |pm|+ Z ‘Skeikt
k=0
N=2™
< |pml+ o] +] Y Srett
k=gm-1
N—2mngm—1
= |pml + Ipm—ll + Z 5keikt
k=0
<
N—Q™ 2™
< ‘pmf"”lpmwll"‘""{‘lpr"l‘ Z 6keikt
k=0
m N-2M .27
= N lml+| D, exe*,
l=r k=0

since N — 2™ — ... — 27 < 271, By induction, we get the required inequality.
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To show (b), note that if wn, =0 (that is N < 2™), then

N

N
Z 5keikt - Z eke““.
k=0

k=0

Thus because of (a) we may assume w,, = 1. Therefore, N > 2™ and (1)
together with (2) imply

N 2m—1 N
Z(skeikt < z ekez‘kt + Z 6keikt
k=0 k=0 k=2m
N—2™
= ‘pmH' Z 6k3ikt .
k=0

Thus (b) follows from the proof of (a). To show (c), note that by the first
paragraph of the proof, it suffices to show

2"-1 . m
3 e <1+ wilal, (6)
k=M 1=0

where w; = 0 or 1 are so that 2" — 1 — M = w,2™ + -+ 4 we2®. Suppose that
(6) is true if m is replaced by m—1. If M =0, then 2" ~1-M =2""14... 41
and

2" -1

Z ekeikt
k=0

= |pn|

IA

Ipn—1| + Iq'n—ll < lpn—2| + IQn—ZI + IQn—ll
n—1

<14 Yl
=0

So assume M > 1 and w, = 1. Let 0 < p < g be so that M = 2942971 ... 127,
Then

I

2"—1 2" 1 29ti_q
Z ettt < Z ekeikt n Z ekt
k=M k=24q+1 k=M
n—1 291
< Y lal+] ), e
I=q+1 k=M 24
n-1 271
= ) lal+] ) se,
l=q+1 k=M
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where My = M — 29 — ... — 2P < 2P~1 Note that the second inequality above
follows from (1), (2) and
2" —~1 n—1
Z erettt| < Z gl
k=2m l=m
We now have
2m]
p=0= Z exe™| < Z la} + 1,
l=q+1
and
2" 1 op-1_1
p21=> Z exe™| < Z al +1gp-1| +| ) exe™
I=¢+1 k=M,
Since 2"—1—M: (Qn—1+.‘.+gq_|_...+217+...+1)_(2q+...+2p+
n—1
O0x 271 4...), wehavep =0 = 2"-1-M = Z 2 andp > 1 =
l=q+1
n—1
2"—-1-M= Z 2! + 2P — 1 — M, which complete the proof.
l=q+1
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