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n-ARY P-H,-GROUPS

M. GHADIRI* AND B. N. WAPHARE

ABSTRACT, n-ary H,-structures is a generalisation of both n-ary struc-
tures and Hyp-structures. A wide class of n-ary Hy-groups is the n-ary
P-Hy-groups that is concidered in this paper. In this paper the notion of
a normal subgroup of an n-ary P-Hy-group is introduced and the isomor-
phism theorems for n-ary P-H,-groups are stated and proved. Also some
examples and related properties are investigated.
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1. Introduction

Since Marty [8] had introduced the basic concepts of hyperstructures several
authors have studied about them. H,-structures which is a larger class of hy-
perstructures introduced by T. Vougiouklis in [13]. P-H,-structures which is
a subclasses of H,-structures studied in [10] by S. Spartalis and T. Vougiouk-
lis. The reader will found in [9, 11, 12] a deep discussion on P-hyperstructures
theory. The notion of an n-ary group was introduced by Dornte in [3], which
is a natural generalization of the notion of a group. Since then many papers
concerning various n-ary algebra have appeared in the literature, for example
see [3-6]. The notion of n-ary hypergroups is defined and considered by Davvaz
and Vougiouklis in [2], which is a generalization of hypergroups in the sense of
Marty and a generalization of n-ary groups. It is introduced the notion of an
n-ary Hy-group in [7].

This paper deals with a certain algebraic system as a subclass of n-ary H,
groups which is called n-ary P-H,-groups. The notion of a normal subgroup
of an n-ary P-H,~group is introduced and the isomorphism theorems for n-ary
P-H,-groups are stated and proved. Also some examples and related properties
are investigated.

2. n-ary P-H,-Groups
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946 M. Ghadiri and B. N. Waphare

Let H be a non-empty set and H™ be the Cartesian product H X --- x H
where H appears n times. An element of H™ will be denoted by (z1,--- , zn).
In general, a mapping

f+H" - P*(H)
is called an n-ary hyperoperation and n is called the arity of the hyperoperation,
where P*(H) is the set of all non-empty subsets of H. Let f be an n-ary
hyperoperation on H. For Ay, --, A, subsets of H, it is defined

f(Ala"'yA’n): U f(mla“';mn)~

Z;€A;
We shall use the following abbreviated notation: ‘ '
The sequence z;, Zit1,- -+ ,&; will be denoted by z]. For j < ¢, z] is the
empty set. In this convention f(z1,---,%i, Yit1, -, %41, -, 2n) Will be

written as f(z%, 7,1, 2011)-
If m = k(n — 1) + 1, the m-ary hyperoperation h given by

RS = f(FC - F(FED A2, ol 1))
k

will be denoted by f(x). In certain situations, when the arity n does not play a
crucial role, or when it will differ depending on additional assumptions, we write
f() to mean f() for some k =1,2,---.

According to [2] a non-empty set H with an n-ary hyperoperation f : H" —
P*(H) is an n-ary semihypergroup if the associativity is valid, i.e. for all
Z1,°+* ,ZTop—1 € H and 4,5 € {1,--- ,n}

GRS G R B (RN CASND N Syl
Moreover, if for all a1, -+ ,a;-1,0;41, - ,8n,b € H and 1 < i < n, there exists
z; € H such that
be flai™", z, ai41)
then (H, f) is called an n-ary hypergroup. This axiom is called reproduction

axiom.
An element e of H is called identity(neutral) element if

.f(e)"' 1€ Ty €00, €
S e s e’
i—1 n—1

includes z, for any z € H and 1 <4 < n.
The n-ary hyperstructure (H, f) will be called an n-ary H,-semigroup|7] if

the weak associativity is valid, i.e. for all 21, -+, 29,1 € H,
. - )
N A 1@ )a) # 0.
1<i<n

And if the reproduction axiom is valid then (H, f) is called an n-ary H,-group.
The reproduction axiom can be formulated by f(a’™*, H,a},;) = H
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Let (H, f) be an n-ary H,-group(semigroup) and B C H, then B is called an
H,-subgroup(subsemigroup) of H if and only if (B, f) is an n-ary H,-group(semi-
group).

Lemma 2.1. [7] Let B be a subset of the n-ary H. -group (H, f); then

(¢) B is an H,-subsemigroup of H if and only if f(a1 1 H, a?yy) € H,

(i) B is an H,-subgroup of H if and only if f(ai™?, H, aty,) = H,
forallay,- - ,8i-1,0i41, - ,an € H, and 1 <1 < n.

Definition 2.2. Consider the semigroup (H,-) with center Z(H) and suppose
¢ #P CH. Fork=0,1,---,n it is defined the map P} : H® — P*(H) as
follows:

Fi(zf) = Pz -z,
Pi(2]) = z1- zpPZpyr- Ty, for 1 <k <,
for z1,- -+ ,z, € H. It is clear that P} is an n-ary hyperoperation which is called

an n-ary P-hyperoperation and if P C Z(H) then

P; =P}, for k,s€{0,1,---,n}.
We denote the P-hyperoperation Py by P*. If algebraic structure (H, Pf) is an
n-ary H,-group(semigroup), then it is called an n-ary P-H,-group(semigroup)
over (H,-).
Example 2.3. Let (H,-) be a group with identity element e. If P = {e} then
for P*(= e* say) we have

e’ (z?) ={z1- zTn}-
So, (H,€*) is an n-ary P-H,~group and also n-ary group, which is called the
simple n-ary group over (H, ).

Lemma 2.4. For k = 0,1,---,n and semigroup (H,-), consider the algebraic
structure (H, P}),
(¢) of P C Z(H) then it is an n-ary semshypergroup,
(i) if PNZ(H) # ¢ then it is an n-ary P-H,-group if and only if (H,") is a
group.
Proof. (i) Suppose x3,:-+,Zan~1 € H and 1 <¢,j < n. Then
P (a: 1 ,Pk( g™t g2l = PPzy..z9,_, since P C Z(H)

n+i
+i-1y 2n—1
= P’} ,Pk(a:" TR )-

This shows that P} is associative and (H, Py) is an n-ary semihypergroup.
(¢%) Suppose (H, P}) is an n-ary P-H,-group. Then by reproduction axiom
for every 3, - ,&n,h € H we have

H =P;(«%,H,h) =23 zp42Pxy3- - -znHh C Hh.
Therefore Hh = H and we can get that (H,-) is a group.
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Conversely; suppose (H,-) is a group. If a € PN Z(H) then for sequence

xf”’l in H we have

aazry - Top—1 € ﬂ Py (7Y, Pr(a™Y), xiﬁ;l).
1<i<n
So (H, P}) is an n-ary P-H,-semigroup. Since (H,-) is a group and P C H we
have
1 TePTpqr Tio Hzipy -z = H.

ie., Pi(z}, H,z1,) = H. Therefore (H, Py) is an n-ary P-H,-group. O
Corollary 2.5. Suppose (H,) is a group. For k =0,1,---,n,

(i) if e € P, then (H, P;) is an n-ary P-H,-group,

(1) if P C Z(H), then (H, Py) is an n-ary hypergroup.
Proof. (i) Since e € P, PN Z(H) # ¢, by (it) of Lemma 2.3 (H, P}) is an n-ary
H,-group.

(44) By (i) of Lemma 2.3 (H, P}) is an n-ary semihypergroup. The proof will
be completed as the proof of (i¢) of Lemma 2.4. O

Theorem 2.6 [7]. Consider the P-H,-group (H,P*) over the group (H,-).
Suppose e € P and B C H. Then (B, P*) is an n-ary P-H,-subgroup of (H, P*)
if and only if P C B and B is a subgroup of (H,-).

3. Quotient n-ary P-H,-groups
Throughout in this section P C H, PN Z(H) # ¢, (H, P*) is an n-ary P-
H.,-group over the group (H,-) and (L, P*) is an n-ary P-H,-subgroup of H,
so by Theorem 2.6, P C L and (L,-) is a subgroup of (H,-). Also, for n-ary
hyperoperation f, we denote the f(z%,y,---,y) by f(a,y.), for 1, ,zi, y €
—

n-—1

Hand1<i<n.
Definition 3.1. An n-ary P-H,-subgroup (N, P*) of (H, P*) is called an n-ary
P-H,-normal subgroup of H if for az,--- ,an € H and 2 <¢,7 < n,
P*(aé? Ni aizl) = P*(ags Na ajil)'
Theorem 3.2. Let N C H and P C Z(H)N N. Then (N, P*) is an n-ary

P-H, normal subgroup of (H, P*) if and only if (N,-) is a normal subgroup of
(H,-).
Proof. Suppose (N, P*) is an n-ary P-H,-normal subgroup of (H, P*) then by
Theorem 2.6, N is a subgroup of H. If a € H then
aN = aPN, since PC N and (N,-) is a group
= PaN, since P C Z(H)
P*(a,N,e.)
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= P*(N,a,e.), since (N, P*) is an n-ary H,-normal subgroup
= PNa
= Na, since P C N and (N, ) is a group.

Therefore (N, -) is a normal subgroup of (H,-).

Conversely, let (N, ) be a normal subgroup of (H, -} and ag, -+ , a, in H then
for every 2 <i,5 <n we have:

P*(ai'z'l,N,a?) = Pay---a;_1Na;---a,
= Pay---a;_1Na; - -ayp, since (N,-) is a normal subgroup
= P*(d;',N,a).
By Theorem 2.6, the proof is completed. O
The relation 8 on H"? is defined by
(uy)0(vg) if and only if P*(L,uy) = P*(L,v}),

for sequences u}, v} in H™ 1.

It is clear that the relation @ is an equivalence relation on H™=!, which is called
6 relation corresponding to L. It is denoted the @ class of (u}) in H™! by
P(L,u3) and the set includes of all 6 classes by H"~!/L. Because for every
Ug,- -+ , U, € H we have

PL,ud) = PLuy---un
e P*(L,UQ...un,e’...,e)
N —

n—2
= LUQ s Up

Hence P(L,u}) = P(L,ug" - - un,€.), and
H* /L ={P(L,h,e) | h€ H},
where
P(Lhe) = {(ul)eH"Y|P*Lup)=P(L,he)}
{(u}) € H* 1| Luy - -u, = Lh}.

Also the relation o on H is defined by zoy if and only if there exists a sequence
u in H such that z,y € P*(L,u}), for every z,y € H, which is called the o
relation on H corresponding to L.

Lemma 3.3. Consider the o relation corresponding to L on the n-ary P-H,-
group (H, P*),
(i) o relation is an equivalence relation on H,
(#1) if x € P*(L,u}), then
z/o = P*(L,uy) = P*(L,z,e.) = Lz,

where x/o is the o-equivalence class of ,



950 M. Ghadiri and B. N. Waphare

(iid) there is a one-one corresponding between H/o, H"'/L and H/L, where
H/o is the set of all equivalence classes of o.

Proof. (i) It is clear that ¢ is a reflexive and symmetric relation. Suppose zoy
and yoz, so there exist sequences v}, v} in H™~! such that

{z,y} € P*(L,u3), {y,2} € P*(L,v3).
If we set u=ug:--un and v = va-- - vy, then
{z,y} € P*(L,u}) = PLuy---un = Lu and {y, 2} C Lv.
Hence
y € Lun Lv # ¢,
{z,y,2} C P*(L,uy) = Lu = Lv = P*(L,v3).
Therefore zoz.
(11) Let z € P*(L,u}) and y € z/o then there exist v1,---,v, € H such that
{z,y} € P*(L,v3). So
z € P*(L,u3) N P*(L,v3).
This concludes
P*(L,ug) = P*(L,v3), y € P*(L,u3),
z/o C P*(L,uy).
Conversely, if z € P*(L, u%) then by definition of ¢ relation we have P*(L, u3)
C x/o. Therefore z/o = P*(L, u}). Moreover

Lz = P*(L,z,e.) = P*(L,uy) = z/o.

(441) By (i) and definition of @ relation, it is clear that there is a one-one
corresponding between

H" /L ={P*(L,z,e) |z € H} and
H/L={lz|z € H}={z/o |z € H} = H/o.
0

Theorem 3.4, Let N be an n-ary P-H,-normal subgroup of n-ary P-H,-group
(H,P*). Then (H"'/N,e*/N) is an n-ary group where for every elements
P(N,ay,¢e), - ,P(N,an,e.) € H" /N,

e*/N(P(N,a1,e.), -+ ,P(N,an,e.)) = P(N,a1-an,e€.).

Proof. Suppose P(N,ay,e.), -, P(N,an,e.),P(N,by,e.), - ,P(N,by,e.)) are
in H*~!/N and P(N, a;,e.) = P(N,b;,e.), fori=1,---,n. Then

P*(N,a;,e) = P*(N,b,e), fori=1,---,n
= Na;=Nb;, fori=1,---,n
= Naj- -0y =Nby---b,.
Therefore
e*/N(P(N,a,e.), -+, P(N,an,e.)) = e /N(P(N,by,e.),- -, P(N, by, e.))
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and e* /N is an n-ary operation.
It is straightforward to see that e* /N on H"!/N is associative.
For elements P(N, a3, e.), -, P(N,ai-1,€.), P(N,a:41,¢€.), -+ , P(N,an,e.),
P(N,b,e.) in H* /N, if
z=(ayai-1) "0 (@iy1-an) "
then we have
6*/N('P(N, ai, e')a Tt P(Ny A1, e-): P(Nv Z, e')’ P(Ny Ait1, 6.), ttty
P(N,an,e.))
= P(N,a1+0i-1%0i41 " 0n),€.)
P(N, a1 @i-1(a1- - 8i-1) 720 (@41 Qn)  Gig1+* an), €.)
= P(N,b,e.).
!
For any m-ary P-H,-normal subgroup (N, P*) of (H,P*), N is a normal
subgroup of H and (H""1/N,e*/N) induces the n-ary group (H/N,e*) which
is the simple n-ary group over the ordinary quotient group (H/N, &).

Example 3.5. Consider (Z, +), the group of integers. Suppose P C 4Z, n =3
and P* : Z 3 — P*(Z) be the hyperoperation defined by

P*(z,y,2) = P+ z+y+2z, for (z,y,2) € Z°
Then (4Z, P*) is a 3-ary P-H,-subgroup of (Z, P*). By Theorem 3.3
Z)o = {AZ, AZ + 1, AZ + 2, 4Z + 3},
and Z2/4Z have four classes, where
(u1,u2)/0 = {(z,y) € Z*| P*(4Z,z,y) = P*(4Z, w1, u2)}
= {(z,9) €2 z+y € 4Z + (u1 + u2)}.
Thus we can consider the 8 classes as the following:
P(4Z,0,0) = (0,0)/60 = {(z,y) € Z*| x+y € 4Z},
P(4Z,1,0) = (1,0)/8 = {(z,y) € Z*| x+y+4Z+ 1},
P(4Z,2,0) = (2,0)/0 {(z,y) € 2% z +y € 4Z.+ 2},
P(4Z,3,0) = (3,0)/8 {(z,y) € Z*| x+y € 4Z + 3}.

By Theorem 3.4, (Z2/4Z, e* /4Z) is a quotient 3-ary group with above four ele-
ments.

Example 3.6. Let (Z, +) be the group of integers and n = 4. By Theorem 3.4,
(Z3/2Z, ¢* /2Z) is a 4-ary group with two elements P(2Z,0,0,0), P(2Z, 1,0, 0).

Definition 3.7. Let (H, P*), (G,Q*) be n-ary P-H,-groups and f : H — G
be a map. Then f is called & homomorphism of n-ary P-H,-groups if

FP* (@) NQ (f(z1), -+, flzn)) # ¢
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and f is called strong homomorphism if

f(P* (1)) = Q*(f(z1), -, f(zn)).
Finally, if f is a bijection strong homomorphism then f is called an isomophism

which is written (H, P*) & (G, Q*).

Example 3.8. For h € Z(H), consider the left by h translation Ly, in (H,")
which obviously is a one-one and onto mapping. Also
Li((A*'P)*(2})) = h(R"'Pzy---1,)
— h"Pzy---z,
= P(hzq):--(hz,)
= P*(Lp(z1),+, Ln(zs)).
So Ly, establishes an isomorphism on (H, (h"~1P)*) and (H, P*).
Lemma 3.9. Let (H, P*), (G,Q*) be n-ary P-H,-groups on (H,-) and (G,")
respectively and f : H — G be a homomorphism of groups. Then
f:(H,P")—(G,Q)
(t) is a homomorphism of n-ary P-H,-groups if and only if f(P)NQ # ¢;
(i) is a strong homomorphism of n-ary P-H,-groups if and only if f(P) = Q.
Proof. (i) If f is a homomorphism of n-ary P-H,-groups, then

fPe)N@*(fle))#¢ = [f(Pe---e)nQf(e)---fle) # ¢
= f(P)NQ#9.

Conversely; if ¢ € f(P) N Q then for every z1,- -,z € P we have

qf(z1)---flzn) € f(P)f(z1---20) NQf(21) - fT0)
= f(P*(z})) NQ*(f(z1), -+, f(zn))-

(#i) Suppose f is a strong homomorphism then

f(P(e)) = Q" (f(e)) and f(P) = Q.
Conversely, if f(P) = Q, for 1,--+ ,z, € H, we have

f(P*(?) = f(Pz1---zn)
= f(P)f(z1)- - f(zn)
= Qf(z1) - flzn)
= Q" (f(z1), -, f(=zn)).
a
Corollary 3.10. Let (H,-) and (G,-) be two groups, and f € Hom(H,G) be

onto. Then, f is a strong homomorphism from the n-ary P-H,-groups (H, P*)
to (G, f(P)").
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Proof. z € PN Z(H) implies f(z) € f(P)N Z(G). By (ii) of Lemma 2.4
(H, P*) and (G, f(P)*) are n-ary P-H,-groups. By (i) of Lemma 3.9 the proof
is completed. 0
We observe that every f € End(H) induces a strong homomorphism on the
n-ary P-H,-group (H, P*),(H, f(P)*). Similarly, every f € Aut(H) induces an
isomorphism on (H, P*), (H, f(P)*). In the special case f(P) = P, we have re-
spectively or an endomorphism or an automorphism in (H, P*). As an example
of the last case we give the following:
any element = of the centralizer of P, z € Cy(P), induces an inner auto-
morphism h +— 7 hz, which induces an automorphism on (H, P*). Because
f(P) =z"'Pz = P and so P* = f(P)*.

Definition 3.11, We define
Pi(z})=an~ 21 TP,
which is called n-ary P.-hyperoperation. The (H, P}) becomes an n-ary P-H,-
group which is called n-ary P.-H,-group.
Consider the surjection ~!: H — H, 2 s 2~1. Then we have
“HPHaD) = (Prycema) T =t 2 P = (P (D),
for z1,- -+ ,xn € H. Therefore, we have the isomorphism
(H, P*) = (H, (P71);).

[+

The element w € H is called a left unit in (H, P*) if
z € P*(w,z,e.), forallz € H,

and is called a right unit if
T € P*(z,w,e.), forallz € H.

But if w is a left unit in (H, P*) then for every z € H we can find p, € P such
that p,w = e. Then w = p;! and for every y € H we have

y € P*(p."1,y,e) = PX(w,y,e).
Conversely; for every z € H we have ¢ € PP~z = P*(P7!, , e.). Therefore
all left units of (H, P*) are elements of the set P!,
Let z € H and pg € P. Then an element 2’ € H is a left inverse of z with
respect to the unit py if
po~ ! € P*(z/,z,e).
So there must exists an element p, € P such that py~

' e P lpy~lz™ 0.

! — p,2’z and thus

Conversely; for every element p; " lpy~lz~! ¢ P~1ps 12~1 we have

po ' =po 'z 'z € Ppitpo el = P*(py T ipote Y e).

Therefore the left inverse elements of z with respect to the unit py* are exactly
the elements of P~1py~lz L.
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Definition 3.12. An n-ary H,-group (G, f) with neutral element is called
reversible in itself when any relation z € f(27) implies that there exist inverses
z17 L, -+, 2, ! such that

—1 -1 -1 —_
xief(zi—l a1 T, Tyt T4 1)7

forany 1 <¢<n.

Theorem 3.13. The n-ary P-H,-group (H, P*) is reversible in itself.

Proof. 1t is straightforward. O
Lemma 3.14. Let f: H — G be a homomorphism, P C K = kerf and
e € Q C G. Then f induces the homomorpkism f: (H,P*) — (G,Q*) of n-ary

P-H,-groups with (K, P*) kernel which is an n-ary P-H,-normal subgroup of
(H, P7).

Proof. P C K implies f(P) C f(K) = e € Qand f(P)NQ # ¢. By (¢) of
Lemma 3.9, f is a homomorphism of n-ary P-H,-groups.
Ifai, - ,an € Hand 1 <4,7 < n, then
P*(aé,K, a?+1) = Pag-- -aiKaH.l crelp
= Pay:--ajKaji1: - an, since K is normal in H
= P*(a%,K, a?+1)-
Therefore, by (i4) of Lemma 2.4, (K, P*) is an n-ary P-H,-normal subgroup of
H. O

Lemma 3.15. Let f : H — G be a homomorphism of groups and P C K =
kerf. Then for k € IN and z1,+ -+, Tr(n—1)+1 € H we have

F(Piy(@1, -+ s Tem—1)+1)) = f(@1) - F(Zr(n—1)+1)-
Proof. f k=2 and 21, ,2on—1 € Hthenfor 2<i<n-1

(. i—1 p*/ nti—1 2n—-1y _
P (33 1 7P (xi )amn-}-i )—le"'xi—lpl'i"'wn—i-f-l"'-'L'2n—1‘

So
(P (T P, 2200 ) = f(P) (1) - fmic1) f(P) f(2s) -+ f(Tan—1)
= f(z1) -+ f(zan—1), since P C K.

Therefore we can write

F(Pey @ ™h) = f(z1) -+ f(wan-1).

By using induction on % it is easy to prove that for every k € IN

f(P(“}g)(ml, e >1k(n—1)+1)) = f(z1)-- 'f(wk(n—l)-{—l)-
|

Theorem 3.16. Let f : H — G be an epimorphism of groups and K = kerf.
Then
(H™'/K,e*/K) 2 (G, e*).
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Proof. We define

o H YK — G, o(P(K, h,e)) = f(h).
If P(K,h,e.), P(K,t,e) € H"!/K, then
P(K,h,e.) =P(K,t,e.)
P*(K,h,e.) = P*(K,t,¢)
PKh = PKt
Kh = Kt, since PC K
f(Kh) = f(Kt), since K = kerf
F(K)f(h) = f(K)f(t), since f is a homomorphism
f(h) = f(t), since K = kerf
¢(P(K,h,e.)) = o(P(K,t,e.)).

Therefore ¢ is a one-one function.
Because f is onto, for g € G there exists h € H such that f(h) = g, then

@(P(Ka h, 6)) = f(h) =9,

S| R

S0 ¢ is onto.
For P(K,hy,e.),++ ,P(K,hn,e.) € H" /K we have

o(e*/K(P(K,h1,e),  ,P(K, hy,e.)))

= @(P(K,h1---hy),e)),

= f(h1-- hy)

= f(hy)--- f(hyn), by Lemma 3.9

= €' (f(h), -, f(hn))

= €(p(P(K,hy,e)), -, 9(P(K, hn,e.))).
Therefore ¢ is an isomorphism of n-ary groups. a
Theorem 3.17. If N be a normal subgroup of (H,.), then

(H" !/N,e*/N) = (H/N,e*).
Proof. We consider the natural epimorphism
f:H— H/N.

Because N = kerf, by Theorem 3.16, (H"~!/N,e*/N) = (H/N, e*). (W

Example 3.18. Suppose k,n € Ny and f : Z — Zj, f(z) = [z]. Then, by
Theorem 3.16, (Zx, e*) and (Z*~'/kZ, e* /kZ) are isomorph as two n-ary groups
where

Z"'/kZ = {P(kZ,t,0.) | t € Z}, and
P(kZ,t,0.) = {(ug, - ,un) €Z"Y | ug + -+ +u, € kZ +1t}.
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Theorem 3.19. Let N, K be normal subgroups of H and N C K. Then
(BN (K N) 2 B,
Proof. Suppose P(N, h,e.) € H*!/N and define
: (H" /N /(K™ /N) — H"V/K,
¢(P/N(K™'/N,P(N,h,e.),N) = P(K, h,e.).
If the elements P/N(K"~1/N,P(N,h,e.),N.),P/N(K"~/N,P(N,k e.),N)
are in (H"~!/N)"~1/(K"~1/N), then
P/N(K""'/N,P(N,h,e.),N) =P/N(K"~*/N,P(N,},e.), N.)
K/N(Nh) = K/N(NHK), by (i) of Lemma 3.3
Nh(NR)™' € K/N
() teK
Kh=KHN
P(K,h,e.) =P(K,le.)
o(P/N(K" '/N,P(N,h,e.),N)) = o(P/N(K""!/N,P(N, I e.), N.)).
Therefore,  is a one-one function.
Now, for P/N(K"~!/N,P(N, hy,e.),N.), -+ ,P/N(K""1/N,P(N, hy,e.),N.) in
(H*'/N)*~ /(K™ !'/N) we have
ole” /(K™ [N)(PIN(K™ [N, P(N, ha, ), N, -
P/N(K"1/N,P(N, hn,e.),N.)))
= o(P/N(K"'/N,e*/N(P(N,hy,e.),+ ,P(N, hn,e.)),N.)
= o(P/N(K""'/N,P(N,h1++hn,e.),N))
=P(K,hy-hp,e.)
=e"/K(P(K, hy,e.), - ,P(K,hy,e.))
= e’ /K(p(P/N(K" /N, P(N, hy,e.),N.), -+,
@(P/N(K" ' /N,P(N, hn,e.), N.))).

It is clear ¢ is onto. So ¢ is an isomorphism. O]

tte e

¢

Theorem 3.20. Let Ly,---, L, be subgroups of H such that L, is normal
and eiej Zgjfi, foré, € L;, Ej S Lj, 1<4, j<n. Then
(€ (L))" /Ly = (e* (e, L3))" ' [e* (e, L}) N L1
Proof. Weset L = Ly --- Ly,. Then L is a subgroup of (H, -). Similarly, e*(L}) =
L1L and LN L; are subgroups of (H,-) and LN L; is normal in L. If
T e (e" (L)L, Ue L™ Y/LN Ly,

then for some £,£' € L, 41 € L1, T = P(L1,414,e.) and U = P(LN Ly, ¢ e.). We
Define
o (e (L))" /L1 — (e*(e, L))" /e (e, L3) N Ln
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o(T) = p(P(L1, 0l e.)) = P(LN Ly, be).
For Ty = P(L1, 414, ¢.), To = P(L1,0,¢e.) € L/L; we have

Ti=T, & Li6if=Lift, by (iii) of Lemma 3.3

o Lit=L¢
(Y telinL
(LinL) = (LinL)¢
P(LyNL,4e)=PL1NL,¥,e), by (i) of Lemma 3.3
P(P(L,tit,e)) = p(P(L1, 6, c.).

st

Thus, ¢ is a one-one function. It is clear that ¢ is onto.
Suppose, P(Ly,l1141,€.), -+ , P(L1, binkp,e.) € (e*(LT))" /L, then,

o(e*/L1(P(Ly, £1141,e.), -+, P(L1, Lintn, e.)))

= @(P(L1, li1l1 - - - Linln, €.))

= @(P(L1,(b11-- - £1n)(f1 - - -£y),e.), since Ly is normal
=P(Ly "Ll - Ln,e)

= (*/(LiND)(PUI1 N Ly, e), -, P(Ly N L bn,e.))

= (e*/(Li N L))(p(P(L1,L11b1,e)), -, 0(P(L1, bintn, €.))).

Therefore, ¢ is an isomorphism. O

Definition 3.21. Let (H, f), (G, g) be n-ary and m-ary H,~groups respectively
such that n < m and G has the ey neutral element. Then the map p: H — G
is called an (n, m)-homomorphism if

o(f(21) = 9(((21), -+ ,p(zn), €2.).

Theorem 3.22. Consider the (H,-) group with normal subgroup N. Then for
n>32
(@) Iy : (H,-) — (H, P*) is a (2, n)-isomomorphism,
(i) the map ¢ : H/N — H™ '/N, o(Nh) = P(N,h,e.) is an isomorphism
of quotient binary and n-ary groups. Indeed ¢ is a (2,n)-isomomorphism;
(i4) Mg : (H,P*) — (H""1/N, €*/N), na(z) = P(N,z,e.) is a strong epi-
morphism of n-ary P-H,-groups which is called the n-ary natural epimorphism;
(tv) the below diagram is commutative:
(H,) - (H/N,")
J, Iy l 2 3
(H,e*) ™3 (H"'/N,e*/N)

where (H,) 3 (H/N,-) is the natural epimorphism.
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Proof. (1)
Ig(zy) = zy
= e
n—2
= ¢€*(z,y,e)
= e (Iu(x), Iu(y)e.).
(i) Suppose Nh1, Nho € H/N. Then
& Nhy = Nhg
& P(N,hy,e) =P(N,hae.)
& @(Nhy) = ¢(Nhy).
Therefore ¢ is a one-one function. For Nhy, Nhy € H/N we have
©(Nh1.Nhy) = @(Nhihs)
= P(N,hihy,e.)
e*/N(P(N, hy,e.),P(N, ho,e.),P(N,e.).).
So ¢ is a (2, n)-homomorphism. Also ¢ is onto.
(i4d)
m2(e*(z))) = TMa(z1-- 2n)
P(N,z1+Zn,e.),
e*/N(P(N,z1,e.), -+ ,P(N,zyn,e.))
e’ IN(Ta(z1),- -+ , 2 (2n)).
(i) It is straightforward. a

Corollary 3.23. If k,m,n € IN, then Z"'/kZ and Z™ ' /kZ as n-ary and
m-ary groups respectively are isomorph.

Proof. By (ii) of Theorem 3.22, it is clear. O

Theorem 3.24. Let {e} — H ENY GENY AR {e} be a short exact sequence
of groups, n; <mng <nz ande € PC H, Q C K, RC L such that f(P) =
Q, 9(Q) = R. Then the sequence
{e} — (H, P*) = (K,Q") — (L, R*) — {e} (*)

is a short ezact sequence of (N1, ng, ng)-ary P-H,-groups.
Proof. Because e € P,

e=fle) € f(P)=Qand

e=gle) € 9@ =Rk

By (ii) of Lemma 2.4, (H, P*), (K, Q*), (L, R*) are n-ary P-H,-groups. By (ii)
of Lemma 3.9, all maps in (*) are homomorphisms of n-ary P-H,-groups. U
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