n-ARY P- H_v -GROUPS

M. GHADIRI* AND B. N. WAPHARE

ABSTRACT. n-ary H_v -structures is a generalisation of both n-ary structures and H_v -structures. A wide class of n-ary H_v -groups is the n-ary P- H_v -groups that is concidered in this paper. In this paper the notion of a normal subgroup of an n-ary P- H_v -group is introduced and the isomorphism theorems for n-ary P- H_v -groups are stated and proved. Also some examples and related properties are investigated.

AMS Mathematics Subject Classification: 20N20, 20N15. Key words and phrases: n-ary H_v -group, n-ary P- H_v -group, quotient n-ary P- H_v -group, isomorphism theorems.

1. Introduction

Since Marty [8] had introduced the basic concepts of hyperstructures several authors have studied about them. H_v -structures which is a larger class of hyperstructures introduced by T. Vougiouklis in [13]. P- H_v -structures which is a subclasses of H_v -structures studied in [10] by S. Spartalis and T. Vougiouklis. The reader will found in [9, 11, 12] a deep discussion on P-hyperstructures theory. The notion of an n-ary group was introduced by Dornte in [3], which is a natural generalization of the notion of a group. Since then many papers concerning various n-ary algebra have appeared in the literature, for example see [3-6]. The notion of n-ary hypergroups is defined and considered by Davvaz and Vougiouklis in [2], which is a generalization of hypergroups in the sense of Marty and a generalization of n-ary groups. It is introduced the notion of an n-ary H_v -group in [7].

This paper deals with a certain algebraic system as a subclass of n-ary H_v groups which is called n-ary P- H_v -groups. The notion of a normal subgroup of an n-ary P- H_v -group is introduced and the isomorphism theorems for n-ary P- H_v -groups are stated and proved. Also some examples and related properties are investigated.

2. n-ary P- H_v -Groups

Received July 14, 2007. Accepted January 29, 2008. *Corresponding author. © 2008 Korean SIGCAM and KSCAM.

Let H be a non-empty set and H^n be the Cartesian product $H \times \cdots \times H$ where H appears n times. An element of H^n will be denoted by (x_1, \dots, x_n) . In general, a mapping

$$f: H^n \to \mathcal{P}^*(H)$$

is called an n-ary hyperoperation and n is called the arity of the hyperoperation, where $\mathcal{P}^*(H)$ is the set of all non-empty subsets of H. Let f be an n-ary hyperoperation on H. For A_1, \dots, A_n subsets of H, it is defined

$$f(A_1, \dots, A_n) = \bigcup_{x_i \in A_i} f(x_1, \dots, x_n).$$

We shall use the following abbreviated notation:

The sequence x_i, x_{i+1}, \dots, x_j will be denoted by x_i^j . For j < i, x_i^j is the empty set. In this convention $f(x_1, \dots, x_i, y_{i+1}, \dots, y_j, z_{j+1}, \dots, z_n)$ will be written as $f(x_1^i, y_{i+1}^j, z_{i+1}^n)$.

If m = k(n-1) + 1, the m-ary hyperoperation h given by

$$h(x_1^{k(n-1)+1}) = \underbrace{f\Big(f(\cdots f(f(x_1^n), x_{n+1}^{2n-1}), \cdots, x_{(k-1)(n-1)+2}^{k(n-1)+1})\Big)}_{k}$$

will be denoted by $f_{(k)}$. In certain situations, when the arity n does not play a crucial role, or when it will differ depending on additional assumptions, we write $f_{(k)}$ to mean $f_{(k)}$ for some $k = 1, 2, \cdots$.

According to [2] a non-empty set H with an n-ary hyperoperation $f: H^n \to \mathcal{P}^*(H)$ is an n-ary semihypergroup if the associativity is valid, i.e. for all $x_1, \dots, x_{2n-1} \in H$ and $i, j \in \{1, \dots, n\}$

$$f(x_1^{i-1},f(x_i^{n+i-1}),x_{n+i}^{2n+i-1})=f(x_1^{j-1},f(x_j^{n+j-1}),x_{n+j}^{2n-1}).$$

Moreover, if for all $a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n, b \in H$ and $1 \le i \le n$, there exists $x_i \in H$ such that

$$b \in f(a_1^{i-1}, x_i, a_{i+1}^n)$$

then (H, f) is called an n-ary hypergroup. This axiom is called reproduction axiom.

An element e of H is called identity (neutral) element if

$$f(\underbrace{e,\cdots,e}_{i-1},x,\underbrace{e,\cdots,e}_{n-1})$$

includes x, for any $x \in H$ and $1 \le i \le n$.

The *n*-ary hyperstructure (H, f) will be called an *n*-ary H_v -semigroup[7] if the weak associativity is valid, i.e. for all $x_1, \dots, x_{2n-1} \in H$,

$$\bigcap_{1 \le i \le n} f\left(x_1^{i-1}, f(x_i^{n+i-1}), x_{n+i}^{2n-1}\right) \ne \phi.$$

And if the reproduction axiom is valid then (H, f) is called an n-ary H_v -group. The reproduction axiom can be formulated by $f(a_1^{i-1}, H, a_{i+1}^n) = H$.

Let (H, f) be an n-ary H_v -group(semigroup) and $B \subseteq H$, then B is called an H_v -subgroup(subsemigroup) of H if and only if (B, f) is an n-ary H_v -group(semigroup).

Lemma 2.1. [7] Let B be a subset of the n-ary H_v -group (H, f); then

- (i) B is an H_v -subsemigroup of H if and only if $f(a_1^{i-1}, H, a_{i+1}^n) \subseteq H$,
- (ii) B is an H_v -subgroup of H if and only if $f(a_1^{i-1}, H, a_{i+1}^n) = H$, for all $a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n \in H$, and $1 \leq i \leq n$.

Definition 2.2. Consider the semigroup (H, \cdot) with center Z(H) and suppose $\phi \neq P \subseteq H$. For $k = 0, 1, \dots, n$ it is defined the map $P_k^* : H^n \to \mathcal{P}^*(H)$ as follows:

$$P_0^*(x_1^n) = Px_1 \cdots x_n, P_k^*(x_1^n) = x_1 \cdots x_k Px_{k+1} \cdots x_n, \text{ for } 1 \le k \le n,$$

for $x_1, \dots, x_n \in H$. It is clear that P_k^* is an *n*-ary hyperoperation which is called an *n*-ary *P*-hyperoperation and if $P \subseteq Z(H)$ then

$$P_k^* = P_s^*, \text{ for } k, s \in \{0, 1, \dots, n\}.$$

We denote the P-hyperoperation P_0^* by P^* . If algebraic structure (H, P_k^*) is an n-ary H_v -group(semigroup), then it is called an n-ary P- H_v -group(semigroup) over (H, \cdot) .

Example 2.3. Let (H, \cdot) be a group with identity element e. If $P = \{e\}$ then for $P^*(=e^* \text{ say})$ we have

$$e^*(x_1^n) = \{x_1 \cdots x_n\}.$$

So, (H, e^*) is an n-ary P- H_v -group and also n-ary group, which is called the simple n-ary group over (H, \cdot) .

Lemma 2.4. For $k = 0, 1, \dots, n$ and semigroup (H, \cdot) , consider the algebraic structure (H, P_k^*) ,

- (i) if $P \subseteq Z(H)$ then it is an n-ary semihypergroup,
- (ii) if $P \cap Z(H) \neq \phi$ then it is an n-ary P- H_v -group if and only if (H, \cdot) is a group.

Proof. (i) Suppose $x_1, \dots, x_{2n-1} \in H$ and $1 \le i, j \le n$. Then

$$\begin{array}{lcl} P_k^*(x_1^{i-1}, P_k^*(x_i^{n+i-1}), x_{n+i}^{2n-1}) & = & PPx_1 \cdots x_{2n-1}, \text{ since } P \subseteq Z(H) \\ & = & P_k^*(x_1^{j-1}, P_k^*(x_j^{n+j-1}), x_{n+j}^{2n-1}). \end{array}$$

This shows that P_k^* is associative and (H, P_k^*) is an n-ary semihypergroup.

(ii) Suppose (H, P_k^*) is an n-ary P- H_v -group. Then by reproduction axiom for every $x_3, \dots, x_n, h \in H$ we have

$$H = P_k^*(x_3^n, H, h) = x_3 \cdots x_{k+2} P x_{k+3} \cdots x_n H h \subseteq H h.$$

Therefore Hh = H and we can get that (H, \cdot) is a group.

Conversely; suppose (H,\cdot) is a group. If $a\in P\cap Z(H)$ then for sequence x_1^{2n-1} in H we have

$$aax_1 \cdots x_{2n-1} \in \bigcap_{1 \le i \le n} P_k^*(x_1^{i-1}, P_k^*(x_i^{n+i-1}), x_{n+i}^{2n-1}).$$

So (H, P_k^*) is an n-ary P- H_v -semigroup. Since (H, \cdot) is a group and $P \subseteq H$ we have

$$x_1 \cdots x_k P x_{k+1} \cdots x_{i-1} H x_{i+1} \cdots x_n = H.$$

i.e.,
$$P_k^*(x_1^i, H, x_{i+1}^n) = H$$
. Therefore (H, P_k^*) is an n -ary P - H_v -group. \square

Corollary 2.5. Suppose (H, \cdot) is a group. For $k = 0, 1, \dots, n$,

- (i) if $e \in P$, then (H, P_k^*) is an n-ary P- H_v -group,
- (ii) if $P \subseteq Z(H)$, then (H, P_k^*) is an n-ary hypergroup.

Proof. (i) Since $e \in P$, $P \cap Z(H) \neq \phi$, by (ii) of Lemma 2.3 (H, P_k^*) is an n-ary H_v -group.

(ii) By (i) of Lemma 2.3 (H, P_k^*) is an *n*-ary semihypergroup. The proof will be completed as the proof of (ii) of Lemma 2.4.

Theorem 2.6 [7]. Consider the P- H_v -group (H, P^*) over the group (H, \cdot) . Suppose $e \in P$ and $B \subseteq H$. Then (B, P^*) is an n-ary P- H_v -subgroup of (H, P^*) if and only if $P \subseteq B$ and B is a subgroup of (H, \cdot) .

3. Quotient n-ary P- H_v -groups

Throughout in this section $P \subseteq H$, $P \cap Z(H) \neq \phi$, (H, P^*) is an n-ary P- H_v -group over the group (H, \cdot) and (L, P^*) is an n-ary P- H_v -subgroup of H, so by Theorem 2.6, $P \subseteq L$ and (L, \cdot) is a subgroup of (H, \cdot) . Also, for n-ary hyperoperation f, we denote the $f(x_1^i, y_1, \cdots, y_n^i)$ by $f(x_1^i, y_n^i)$, for $x_1, \cdots, x_i, y \in I$

H and $1 \le i < n$.

Definition 3.1. An *n*-ary P- H_v -subgroup (N, P^*) of (H, P^*) is called an *n*-ary P- H_v -normal subgroup of H if for $a_2, \dots, a_n \in H$ and $2 \le i, j \le n$,

$$P^*(a_2^i, N, a_{i+1}^n) = P^*(a_2^j, N, a_{j+1}^n).$$

Theorem 3.2. Let $N \subseteq H$ and $P \subseteq Z(H) \cap N$. Then (N, P^*) is an n-ary P- H_v normal subgroup of (H, P^*) if and only if (N, \cdot) is a normal subgroup of (H, \cdot) .

Proof. Suppose (N, P^*) is an n-ary P- H_v -normal subgroup of (H, P^*) then by Theorem 2.6, N is a subgroup of H. If $a \in H$ then

$$aN = aPN$$
, since $P \subseteq N$ and (N, \cdot) is a group
= PaN , since $P \subseteq Z(H)$
= $P^*(a, N, e)$

$$= P^*(N, a, e.)$$
, since (N, P^*) is an n -ary H_v -normal subgroup

= PNa

= Na, since $P \subseteq N$ and (N, \cdot) is a group.

Therefore (N, \cdot) is a normal subgroup of (H, \cdot) .

Conversely, let (N, \cdot) be a normal subgroup of (H, \cdot) and a_2, \cdots, a_n in H then for every $2 \le i, j \le n$ we have:

$$P^*(a_2^{i-1}, N, a_i^n) = Pa_2 \cdots a_{i-1} N a_i \cdots a_n$$

$$= Pa_2 \cdots a_{j-1} N a_j \cdots a_n, \text{ since } (N, \cdot) \text{ is a normal subgroup}$$

$$= P^*(a_2^{j-1}, N, a_i^n).$$

By Theorem 2.6, the proof is completed.

The relation θ on H^{n-1} is defined by

$$(u_2^n)\theta(v_2^n)$$
 if and only if $P^*(L, u_2^n) = P^*(L, v_2^n)$,

for sequences u_2^n , v_2^n in H^{n-1} .

It is clear that the relation θ is an equivalence relation on H^{n-1} , which is called θ relation corresponding to L. It is denoted the θ class of (u_2^n) in H^{n-1} by $\mathcal{P}(L, u_2^n)$ and the set includes of all θ classes by H^{n-1}/L . Because for every $u_2, \dots, u_n \in H$ we have

$$P^*(L, u_2^n) = PLu_2 \cdots u_n$$

$$= P^*(L, u_2 \cdots u_n, \underbrace{e, \cdots, e}_{n-2})$$

$$= Lu_2 \cdots u_n$$

Hence $\mathcal{P}(L, u_2^n) = \mathcal{P}(L, u_2 \cdots u_n, e_n)$, and

$$H^{n-1}/L = \{ \mathcal{P}(L, h, e) \mid h \in H \},$$

where

$$\mathcal{P}(L, h, e.) = \{(u_2^n) \in H^{n-1} \mid P^*(L, u_2^n) = P^*(L, h, e.)\}$$
$$= \{(u_2^n) \in H^{n-1} \mid Lu_2 \cdots u_n = Lh\}.$$

Also the relation σ on H is defined by $x\sigma y$ if and only if there exists a sequence u_2^n in H such that $x,y\in P^*(L,u_2^n)$, for every $x,y\in H$, which is called the σ relation on H corresponding to L.

Lemma 3.3. Consider the σ relation corresponding to L on the n-ary P- H_v -group (H, P^*) ,

- (i) σ relation is an equivalence relation on H,
- (ii) if $x \in P^*(L, u_2^n)$, then

$$x/\sigma = P^*(L, u_2^n) = P^*(L, x, e_{\cdot}) = Lx,$$

where x/σ is the σ -equivalence class of x,

(iii) there is a one-one corresponding between H/σ , H^{n-1}/L and H/L, where H/σ is the set of all equivalence classes of σ .

Proof. (i) It is clear that σ is a reflexive and symmetric relation. Suppose $x\sigma y$ and $y\sigma z$, so there exist sequences u_2^n , v_2^n in H^{n-1} such that

$$\{x,y\} \subseteq P^*(L,u_2^n), \{y,z\} \subseteq P^*(L,v_2^n).$$

If we set $u = u_2 \cdots u_n$ and $v = v_2 \cdots v_n$, then

$$\{x,y\} \subset P^*(L,u_2^n) = PLu_2 \cdots u_n = Lu \text{ and } \{y,z\} \subseteq Lv.$$

Hence

$$y \in Lu \cap Lv \neq \phi,$$
 $\{x, y, z\} \subseteq P^*(L, u_2^n) = Lu = Lv = P^*(L, v_2^n).$

Therefore $x\sigma z$.

(ii) Let $x \in P^*(L, u_2^n)$ and $y \in x/\sigma$ then there exist $v_1, \dots, v_n \in H$ such that $\{x, y\} \subseteq P^*(L, v_2^n)$. So

$$x \in P^*(L, u_2^n) \cap P^*(L, v_2^n).$$

This concludes

$$P^*(L, u_2^n) = P^*(L, v_2^n), \ y \in P^*(L, u_2^n),$$
$$x/\sigma \subseteq P^*(L, u_2^n).$$

Conversely, if $x \in P^*(L, u_2^n)$ then by definition of σ relation we have $P^*(L, u_2^n) \subseteq x/\sigma$. Therefore $x/\sigma = P^*(L, u_2^n)$. Moreover

$$Lx = P^*(L, x, e) = P^*(L, u_2^n) = x/\sigma.$$

(iii) By (ii) and definition of θ relation, it is clear that there is a one-one corresponding between

$$H^{n-1}/L = \{ \mathcal{P}^*(L, x, e.) \mid x \in H \}$$
 and $H/L = \{ Lx \mid x \in H \} = \{ x/\sigma \mid x \in H \} = H/\sigma.$

Theorem 3.4. Let N be an n-ary P-H_v-normal subgroup of n-ary P-H_v-group (H, P^*) . Then $(H^{n-1}/N, e^*/N)$ is an n-ary group where for every elements $\mathcal{P}(N, a_1, e.), \dots, \mathcal{P}(N, a_n, e.) \in H^{n-1}/N$,

$$e^*/N(\mathcal{P}(N, a_1, e_{\cdot}), \cdots, \mathcal{P}(N, a_n, e_{\cdot})) = \mathcal{P}(N, a_1 \cdots a_n, e_{\cdot}).$$

Proof. Suppose $\mathcal{P}(N, a_1, e_{\cdot}), \dots, \mathcal{P}(N, a_n, e_{\cdot}), \mathcal{P}(N, b_1, e_{\cdot}), \dots, \mathcal{P}(N, b_n, e_{\cdot}))$ are in H^{n-1}/N and $\mathcal{P}(N, a_i, e_{\cdot}) = \mathcal{P}(N, b_i, e_{\cdot})$, for $i = 1, \dots, n$. Then

$$P^*(N, a_i, e_i) = P^*(N, b_i, e_i), \text{ for } i = 1, \dots, n$$

 $\Rightarrow Na_i = Nb_i, \text{ for } i = 1, \dots, n$
 $\Rightarrow Na_1 \dots a_n = Nb_1 \dots b_n.$

Therefore

$$e^*/N(\mathcal{P}(N, a_1, e_{\cdot}), \cdots, \mathcal{P}(N, a_n, e_{\cdot})) = e^*/N(\mathcal{P}(N, b_1, e_{\cdot}), \cdots, \mathcal{P}(N, b_n, e_{\cdot}))$$

and e^*/N is an *n*-ary operation.

It is straightforward to see that e^*/N on H^{n-1}/N is associative.

For elements $\mathcal{P}(N, a_1, e.), \dots, \mathcal{P}(N, a_{i-1}, e.), \mathcal{P}(N, a_{i+1}, e.), \dots, \mathcal{P}(N, a_n, e.), \mathcal{P}(N, b, e.)$ in H^{n-1}/N , if

$$x = (a_1 \cdots a_{i-1})^{-1} b (a_{i+1} \cdots a_n)^{-1}$$

then we have

$$e^*/N(\mathcal{P}(N, a_1, e.), \cdots, \mathcal{P}(N, a_{i-1}, e.), \mathcal{P}(N, x, e.), \mathcal{P}(N, a_{i+1}, e.), \cdots, \mathcal{P}(N, a_n, e.))$$

$$= \mathcal{P}(N, a_1 \cdots a_{i-1} x a_{i+1} \cdots a_n), e.)$$

$$= \mathcal{P}(N, a_1 \cdots a_{i-1} (a_1 \cdots a_{i-1})^{-1} b (a_{i+1} \cdots a_n)^{-1} a_{i+1} \cdots a_n), e.)$$

$$= \mathcal{P}(N, b, e.).$$

For any n-ary P- H_v -normal subgroup (N, P^*) of (H, P^*) , N is a normal subgroup of H and $(H^{n-1}/N, e^*/N)$ induces the n-ary group $(H/N, e^*)$ which is the simple n-ary group over the ordinary quotient group $(H/N, \oplus)$.

Example 3.5. Consider $(\mathbb{Z}, +)$, the group of integers. Suppose $P \subseteq 4\mathbb{Z}, n = 3$ and $P^* : \mathbb{Z}^3 \to \mathcal{P}^*(\mathbb{Z})$ be the hyperoperation defined by

$$P^*(x, y, z) = P + x + y + z$$
, for $(x, y, z) \in \mathbb{Z}^3$.

Then $(4\mathbb{Z}, P^*)$ is a 3-ary P- H_v -subgroup of (\mathbb{Z}, P^*) . By Theorem 3.3

$$\mathbb{Z}/\sigma = \{4\mathbb{Z}, 4\mathbb{Z} + 1, 4\mathbb{Z} + 2, 4\mathbb{Z} + 3\},\$$

and $\mathbb{Z}^2/4\mathbb{Z}$ have four classes, where

$$(u_1, u_2)/\theta = \{(x, y) \in \mathbb{Z}^2 | P^*(4\mathbb{Z}, x, y) = P^*(4\mathbb{Z}, u_1, u_2)\}$$

= $\{(x, y) \in \mathbb{Z}^2 | x + y \in 4\mathbb{Z} + (u_1 + u_2)\}.$

Thus we can consider the θ classes as the following:

$$\mathcal{P}(4\mathbb{Z}, 0, 0) = (0, 0)/\theta = \{(x, y) \in \mathbb{Z}^2 | x + y \in 4\mathbb{Z}\},\$$

$$\mathcal{P}(4\mathbb{Z}, 1, 0) = (1, 0)/\theta = \{(x, y) \in \mathbb{Z}^2 | x + y + 4\mathbb{Z} + 1\},\$$

$$\mathcal{P}(4\mathbb{Z}, 2, 0) = (2, 0)/\theta = \{(x, y) \in \mathbb{Z}^2 | x + y \in 4\mathbb{Z} + 2\},\$$

$$\mathcal{P}(4\mathbb{Z}, 3, 0) = (3, 0)/\theta = \{(x, y) \in \mathbb{Z}^2 | x + y \in 4\mathbb{Z} + 3\}.$$

By Theorem 3.4, $(\mathbb{Z}^2/4\mathbb{Z}, e^*/4\mathbb{Z})$ is a quotient 3-ary group with above four elements.

Example 3.6. Let $(\mathbb{Z}, +)$ be the group of integers and n = 4. By Theorem 3.4, $(\mathbb{Z}^3/2\mathbb{Z}, e^*/2\mathbb{Z})$ is a 4-ary group with two elements $\mathcal{P}(2\mathbb{Z}, 0, 0, 0)$, $\mathcal{P}(2\mathbb{Z}, 1, 0, 0)$.

Definition 3.7. Let (H, P^*) , (G, Q^*) be n-ary P- H_v -groups and $f: H \to G$ be a map. Then f is called a homomorphism of n-ary P- H_v -groups if

$$f(P^*(x_1^n)) \cap Q^*(f(x_1), \cdots, f(x_n)) \neq \phi$$

and f is called strong homomorphism if

$$f(P^*(x_1^n)) = Q^*(f(x_1), \cdots, f(x_n)).$$

Finally, if f is a bijection strong homomorphism then f is called an isomorphism which is written $(H, P^*) \cong (G, Q^*)$.

Example 3.8. For $h \in Z(H)$, consider the left by h translation L_h in (H, \cdot) which obviously is a one-one and onto mapping. Also

$$L_{h}((h^{n-1}P)^{*}(x_{1}^{n})) = h(h^{n-1}Px_{1}\cdots x_{n})$$

$$= h^{n}Px_{1}\cdots x_{n}$$

$$= P(hx_{1})\cdots (hx_{n})$$

$$= P^{*}(L_{h}(x_{1}), \cdots, L_{h}(x_{n})).$$

So L_h establishes an isomorphism on $(H, (h^{n-1}P)^*)$ and (H, P^*) .

Lemma 3.9. Let (H, P^*) , (G, Q^*) be n-ary P- H_v -groups on (H, \cdot) and (G, \cdot) respectively and $f: H \to G$ be a homomorphism of groups. Then

$$f:(H,P^*)\to (G,Q^*)$$

- (i) is a homomorphism of n-ary P-H_v-groups if and only if $f(P) \cap Q \neq \phi$;
- (ii) is a strong homomorphism of n-ary P-H_v-groups if and only if f(P) = Q.

Proof. (i) If f is a homomorphism of n-ary P- H_v -groups, then

$$f(P^*(e.)) \cap Q^*(f(e.)) \neq \phi \Rightarrow f(Pe \cdots e) \cap Qf(e) \cdots f(e) \neq \phi$$

$$\Rightarrow f(P) \cap Q \neq \phi.$$

Conversely; if $q \in f(P) \cap Q$ then for every $x_1, \dots, x_n \in P$ we have

$$qf(x_1)\cdots f(x_n) \in f(P)f(x_1\cdots x_n)\cap Qf(x_1)\cdots f(x_n)$$

= $f(P^*(x_1^n))\cap Q^*(f(x_1),\cdots,f(x_n)).$

(ii) Suppose f is a strong homomorphism then

$$f(P^*(e.)) = Q^*(f(e.))$$
 and $f(P) = Q.$

Conversely, if f(P) = Q, for $x_1, \dots, x_n \in H$, we have

$$f(P^*(x_1^n)) = f(Px_1 \cdots x_n)$$

$$= f(P)f(x_1) \cdots f(x_n)$$

$$= Qf(x_1) \cdots f(x_n)$$

$$= Q^*(f(x_1), \cdots, f(x_n)).$$

Corollary 3.10. Let (H, \cdot) and (G, \cdot) be two groups, and $f \in Hom(H, G)$ be onto. Then, f is a strong homomorphism from the n-ary P- H_v -groups (H, P^*) to $(G, f(P)^*)$.

Proof. $x \in P \cap Z(H)$ implies $f(x) \in f(P) \cap Z(G)$. By (ii) of Lemma 2.4 (H, P^*) and $(G, f(P)^*)$ are n-ary P- H_v -groups. By (ii) of Lemma 3.9 the proof is completed.

We observe that every $f \in End(H)$ induces a strong homomorphism on the n-ary P- H_v -group (H, P^*) , $(H, f(P)^*)$. Similarly, every $f \in Aut(H)$ induces an isomorphism on (H, P^*) , $(H, f(P)^*)$. In the special case f(P) = P, we have respectively or an endomorphism or an automorphism in (H, P^*) . As an example of the last case we give the following:

any element x of the centralizer of P, $x \in C_H(P)$, induces an inner automorphism $h \mapsto x^{-1}hx$, which induces an automorphism on (H, P^*) . Because $f(P) = x^{-1}Px = P$ and so $P^* = f(P)^*$.

Definition 3.11. We define

$$P_c^*(x_1^n) = x_n^{-1} \cdots x_1^{-1} P_r$$

which is called n-ary P_c -hyperoperation. The (H, P_c^*) becomes an n-ary P- H_v -group which is called n-ary P_c - H_v -group.

Consider the surjection $^{-1}: H \to H, x \mapsto x^{-1}$. Then we have

$$^{-1}(P^*(x_1^n)) = (Px_1 \cdots x_n)^{-1} = x_n^{-1} \cdots x_1^{-1}P^{-1} = (P^{-1})_c^*(x_1^n),$$

for $x_1, \dots, x_n \in H$. Therefore, we have the isomorphism

$$(H, P^*) \cong (H, (P^{-1})_c^*).$$

The element $w \in H$ is called a left unit in (H, P^*) if

$$x \in P^*(w, x, e)$$
, for all $x \in H$.

and is called a right unit if

$$x \in P^*(x, w, e)$$
, for all $x \in H$.

But if w is a left unit in (H, P^*) then for every $x \in H$ we can find $p_x \in P$ such that $p_x w = e$. Then $w = p_x^{-1}$ and for every $y \in H$ we have

$$y \in P^*(p_x^{-1}, y, e_{\cdot}) = P^*(w, y, e_{\cdot}).$$

Conversely; for every $x \in H$ we have $x \in PP^{-1}x = P^*(P^{-1}, x, e)$. Therefore all left units of (H, P^*) are elements of the set P^{-1} .

Let $x \in H$ and $p_0 \in P$. Then an element $x' \in H$ is a left inverse of x with respect to the unit p_0^{-1} if

$$p_0^{-1} \in P^*(x', x, e_\cdot)$$
.

So there must exists an element $p_x \in P$ such that $p_0^{-1} = p_x x'x$ and thus

$$x' \in P^{-1}p_0^{-1}x^{-1}$$
.

Conversely; for every element $p_1^{-1}p_0^{-1}x^{-1} \in P^{-1}p_0^{-1}x^{-1}$ we have

$$p_0^{-1} = p_0^{-1}x^{-1}x \in Pp_1^{-1}p_0^{-1}x^{-1}x = P^*(p_1^{-1}p_0^{-1}x^{-1}, x, e.).$$

Therefore the left inverse elements of x with respect to the unit p_0^{-1} are exactly the elements of $P^{-1}p_0^{-1}x^{-1}$.

Definition 3.12. An *n*-ary H_v -group (G, f) with neutral element is called reversible in itself when any relation $x \in f(x_1^n)$ implies that there exist inverses $x_1^{-1}, \dots, x_n^{-1}$ such that

$$x_i \in f(x_{i-1}^{-1}, \dots, x_1^{-1}, x, x_n^{-1}, \dots, x_{i+1}^{-1}),$$

for any $1 \le i \le n$.

Theorem 3.13. The n-ary P- H_v -group (H, P^*) is reversible in itself.

Proof. It is straightforward.

Lemma 3.14. Let $f: H \to G$ be a homomorphism, $P \subseteq K = kerf$ and $e \in Q \subseteq G$. Then f induces the homomorphism $f: (H, P^*) \to (G, Q^*)$ of n-ary P- H_v -groups with (K, P^*) kernel which is an n-ary P- H_v -normal subgroup of (H, P^*) .

Proof. $P \subseteq K$ implies $f(P) \subseteq f(K) = e \in Q$ and $f(P) \cap Q \neq \phi$. By (i) of Lemma 3.9, f is a homomorphism of n-ary P- H_v -groups.

If $a_1, \dots, a_n \in H$ and $1 \leq i, j \leq n$, then

$$P^*(a_2^i, K, a_{i+1}^n) = Pa_2 \cdots a_i K a_{i+1} \cdots a_n$$

$$= Pa_2 \cdots a_j K a_{j+1} \cdots a_n, \text{ since } K \text{ is normal in } H$$

$$= P^*(a_2^j, K, a_{i+1}^n).$$

Therefore, by (ii) of Lemma 2.4, (K, P^*) is an n-ary P- H_v -normal subgroup of H.

Lemma 3.15. Let $f: H \to G$ be a homomorphism of groups and $P \subseteq K = ker f$. Then for $k \in \mathbb{N}$ and $x_1, \dots, x_{k(n-1)+1} \in H$ we have

$$f(P_{(k)}^*(x_1,\cdots,x_{k(n-1)+1}))=f(x_1)\cdots f(x_{k(n-1)+1}).$$

Proof. If k=2 and $x_1, \dots, x_{2n-1} \in H$ then for $2 \le i \le n-1$

$$P^*(x_1^{i-1}, P^*(x_i^{n+i-1}), x_{n+i}^{2n-1}) = Px_1 \cdots x_{i-1} Px_i \cdots x_{n-i+1} \cdots x_{2n-1}.$$

So

$$f(P^*(x_1^{i-1}, P^*(x_i^{n+i-1}), x_{n+i}^{2n-1})) = f(P)f(x_1) \cdots f(x_{i-1})f(P)f(x_i) \cdots f(x_{2n-1})$$

= $f(x_1) \cdots f(x_{2n-1})$, since $P \subseteq K$.

Therefore we can write

$$f(P_{(2)}^*(x_1^{2n-1})) = f(x_1) \cdots f(x_{2n-1}).$$

By using induction on k it is easy to prove that for every $k \in \mathbb{N}$

$$f(P_{(k)}^*(x_1,\cdots,x_{k(n-1)+1}))=f(x_1)\cdots f(x_{k(n-1)+1}).$$

Theorem 3.16. Let $f: H \to G$ be an epimorphism of groups and K = kerf. Then

$$(H^{n-1}/K, e^*/K) \cong (G, e^*).$$

Proof. We define

$$\varphi: H^{n-1}/K \to G, \ \varphi(\mathcal{P}(K, h, e)) = f(h).$$

If $\mathcal{P}(K, h, e)$, $\mathcal{P}(K, t, e) \in H^{n-1}/K$, then

$$\mathcal{P}(K,h,e.) = \mathcal{P}(K,t,e.)$$

$$\Leftrightarrow P^*(K,h,e.) = P^*(K,t,e.)$$

$$\Leftrightarrow PKh = PKt$$

$$\Leftrightarrow Kh = Kt, \text{ since } P \subseteq K$$

$$\Leftrightarrow f(Kh) = f(Kt), \text{ since } K = kerf$$

$$\Leftrightarrow f(K)f(h) = f(K)f(t), \text{ since } f \text{ is a homomorphism}$$

$$\Leftrightarrow f(h) = f(t), \text{ since } K = kerf$$

$$\Leftrightarrow \varphi(\mathcal{P}(K,h,e.)) = \varphi(\mathcal{P}(K,t,e.)).$$

Therefore φ is a one-one function.

Because f is onto, for $g \in G$ there exists $h \in H$ such that f(h) = g, then

$$\varphi(\mathcal{P}(K, h, e)) = f(h) = g,$$

so φ is onto.

For
$$\mathcal{P}(K, h_1, e.), \dots, \mathcal{P}(K, h_n, e.) \in H^{n-1}/K$$
 we have
$$\varphi(e^*/K(\mathcal{P}(K, h_1, e.), \dots, \mathcal{P}(K, h_n, e.)))$$

$$= \varphi(\mathcal{P}(K, h_1 \dots h_n), e.)),$$

$$= f(h_1 \dots h_n)$$

$$= f(h_1) \dots f(h_n), \text{ by Lemma 3.9}$$

$$= e^*(f(h_1), \dots, f(h_n))$$

$$= e^*(\varphi(\mathcal{P}(K, h_1, e.)), \dots, \varphi(\mathcal{P}(K, h_n, e.))).$$

Therefore φ is an isomorphism of n-ary groups.

Theorem 3.17. If N be a normal subgroup of (H, .), then

$$(H^{n-1}/N,e^*/N)\cong (H/N,e^*).$$

Proof. We consider the natural epimorphism

$$f: H \longrightarrow H/N$$
.

Because N = kerf, by Theorem 3.16, $(H^{n-1}/N, e^*/N) \cong (H/N, e^*)$.

Example 3.18. Suppose $k, n \in \mathbb{N}_0$ and $f : \mathbb{Z} \to \mathbb{Z}_k$, f(z) = [z]. Then, by Theorem 3.16, (\mathbb{Z}_k, e^*) and $(\mathbb{Z}^{n-1}/k\mathbb{Z}, e^*/k\mathbb{Z})$ are isomorph as two *n*-ary groups where

$$\mathbb{Z}^{n-1}/k\mathbb{Z} = \{ \mathcal{P}(k\mathbb{Z}, t, 0.) \mid t \in \mathbb{Z} \}, \text{ and}$$

$$\mathcal{P}(k\mathbb{Z}, t, 0.) = \{ (u_2, \cdots, u_n) \in \mathbb{Z}^{n-1} \mid u_2 + \cdots + u_n \in k\mathbb{Z} + t \}.$$

Theorem 3.19. Let N, K be normal subgroups of H and $N \subseteq K$. Then

$$(H^{n-1}/N)^{n-1}/(K^{n-1}/N) \cong H^{n-1}/K.$$

Proof. Suppose $\mathcal{P}(N, h, e) \in H^{n-1}/N$ and define

$$\varphi: (H^{n-1}/N)^{n-1}/(K^{n-1}/N) \to H^{n-1}/K, \varphi(\mathcal{P}/N(K^{n-1}/N, \mathcal{P}(N, h, e.), N.) = \mathcal{P}(K, h, e.).$$

If the elements $\mathcal{P}/N(K^{n-1}/N, \mathcal{P}(N, h, e.), N.), \mathcal{P}/N(K^{n-1}/N, \mathcal{P}(N, h', e.), N.)$ are in $(H^{n-1}/N)^{n-1}/(K^{n-1}/N)$, then

$$\mathcal{P}/N(K^{n-1}/N, \mathcal{P}(N, h, e.), N.) = \mathcal{P}/N(K^{n-1}/N, \mathcal{P}(N, h', e.), N.)$$

- \Leftrightarrow K/N(Nh) = K/N(Nh'), by (iii) of Lemma 3.3
- $\Leftrightarrow Nh(Nh')^{-1} \in K/N$
- $\Leftrightarrow h(h')^{-1} \in K$
- $\Leftrightarrow Kh = Kh'$
- $\Leftrightarrow \mathcal{P}(K, h, e) = \mathcal{P}(K, h', e)$
- $\Leftrightarrow \varphi(\mathcal{P}/N(K^{n-1}/N,\mathcal{P}(N,h,e.),N.)) = \varphi(\mathcal{P}/N(K^{n-1}/N,\mathcal{P}(N,h',e.),N.)).$

Therefore, φ is a one-one function.

Now, for $\mathcal{P}/N(K^{n-1}/N, \mathcal{P}(N, h_1, e.), N.), \dots, \mathcal{P}/N(K^{n-1}/N, \mathcal{P}(N, h_n, e.), N.)$ in $(H^{n-1}/N)^{n-1}/(K^{n-1}/N)$ we have

$$\begin{split} & \varphi(e^*/(K^{n-1}/N)(\mathcal{P}/N(K^{n-1}/N,\mathcal{P}(N,h_1,e.),N.),\cdots,\\ & \mathcal{P}/N(K^{n-1}/N,\mathcal{P}(N,h_n,e.),N.))) \\ & = \varphi(\mathcal{P}/N(K^{n-1}/N,e^*/N(\mathcal{P}(N,h_1,e.),\cdots,\mathcal{P}(N,h_n,e.)),N.)) \\ & = \varphi(\mathcal{P}/N(K^{n-1}/N,\mathcal{P}(N,h_1\cdots h_n,e.),N.)) \\ & = \mathcal{P}(K,h_1\cdots h_n,e.) \\ & = e^*/K(\mathcal{P}(K,h_1,e.),\cdots,\mathcal{P}(K,h_n,e.)) \\ & = e^*/K(\varphi(\mathcal{P}/N(K^{n-1}/N,\mathcal{P}(N,h_1,e.),N.)),\cdots,\\ & \varphi(\mathcal{P}/N(K^{n-1}/N,\mathcal{P}(N,h_n,e.),N.))). \end{split}$$

It is clear φ is onto. So φ is an isomorphism.

Theorem 3.20. Let L_1, \dots, L_n be subgroups of H such that L_1 is normal and $\ell_i\ell_j = \ell_j\ell_i$, for $\ell_i \in L_i$, $\ell_j \in L_j$, $1 \le i, j \le n$. Then

$$(e^*(L_1^n))^{n-1}/L_1 \cong (e^*(e, L_2^n))^{n-1}/e^*(e, L_2^n) \cap L_1.$$

Proof. We set $L = L_2 \cdots L_n$. Then L is a subgroup of (H, \cdot) . Similarly, $e^*(L_1^n) = L_1L$ and $L \cap L_1$ are subgroups of (H, \cdot) and $L \cap L_1$ is normal in L. If

$$T \in (e^*(L_1^n))^{n-1}/L_1, \ U \in L^{n-1}/L \cap L_1,$$

then for some $\ell, \ell' \in L, \ell_1 \in L_1, T = \mathcal{P}(L_1, \ell_1 \ell, e_{\cdot})$ and $U = \mathcal{P}(L \cap L_1, \ell', e_{\cdot})$. We Define

$$\varphi: (e^*(L_1^n))^{n-1}/L_1 \to (e^*(e, L_2^n))^{n-1}/e^*(e, L_2^n) \cap L_1$$

$$\varphi(T) = \varphi(\mathcal{P}(L_1, \ell_1 \ell, e.)) = \mathcal{P}(L \cap L_1, \ell, e.).$$

For $T_1 = \mathcal{P}(L_1, \ell_1 \ell, e_1), \ T_2 = \mathcal{P}(L_1, \ell'_1 \ell', e_1) \in L/L_1$ we have

$$T_{1} = T_{2} \Leftrightarrow L_{1}\ell_{1}\ell = L_{1}\ell'_{1}\ell', \text{ by } (iii) \text{ of Lemma 3.3}$$

$$\Leftrightarrow L_{1}\ell = L_{1}\ell'$$

$$\Leftrightarrow \ell(\ell')^{-1} \in L_{1} \cap L$$

$$\Leftrightarrow (L_{1} \cap L)\ell = (L_{1} \cap L)\ell'$$

$$\Leftrightarrow \mathcal{P}(L_{1} \cap L, \ell, e.) = \mathcal{P}(L_{1} \cap L, \ell', e.), \text{ by } (iii) \text{ of Lemma 3.3}$$

$$\Leftrightarrow \varphi(\mathcal{P}(L_{1}, \ell_{1}\ell, e.)) = \varphi(\mathcal{P}(L_{1}, \ell'_{1}\ell', e.)).$$

Thus, φ is a one-one function. It is clear that φ is onto. Suppose, $\mathcal{P}(L_1, \ell_{11}\ell_1, e.), \dots, \mathcal{P}(L_1, \ell_{1n}\ell_n, e.) \in (e^*(L_1^n))^{n-1}/L_1$ then,

$$\varphi(e^*/L_1(\mathcal{P}(L_1, \ell_{11}\ell_1, e.), \cdots, \mathcal{P}(L_1, \ell_{1n}\ell_n, e.)))
= \varphi(\mathcal{P}(L_1, \ell_{11}\ell_1 \cdots \ell_{1n}\ell_n, e.))
= \varphi(\mathcal{P}(L_1, (\ell_{11} \cdots \ell_{1n})(\ell_1 \cdots \ell_n), e.), \text{ since } L_1 \text{ is normal}
= \mathcal{P}(L_1 \cap L, \ell_1 \cdots \ell_n, e.)
= (e^*/(L_1 \cap L))(\mathcal{P}(L_1 \cap L, \ell_1, e.), \cdots, \mathcal{P}(L_1 \cap L, \ell_n, e.))
= (e^*/(L_1 \cap L))(\varphi(\mathcal{P}(L_1, \ell_{11}\ell_1, e.)), \cdots, \varphi(\mathcal{P}(L_1, \ell_{1n}\ell_n, e.))).$$

Therefore, φ is an isomorphism.

Definition 3.21. Let (H, f), (G, g) be n-ary and m-ary H_v -groups respectively such that $n \leq m$ and G has the e_2 neutral element. Then the map $\varphi: H \to G$ is called an (n, m)-homomorphism if

$$\varphi(f(x_1^n)) = g((\varphi(x_1), \cdots, \varphi(x_n), e_2)).$$

Theorem 3.22. Consider the (H,\cdot) group with normal subgroup N. Then for n>2

- (i) $I_H: (H, \cdot) \to (H, P^*)$ is a (2, n)-isomomorphism;
- (ii) the map $\varphi: H/N \to H^{n-1}/N$, $\varphi(Nh) = \mathcal{P}(N, h, e)$ is an isomorphism of quotient binary and n-ary groups. Indeed φ is a (2, n)-isomomorphism;
- (iii) $\overline{n}_2: (H, P^*) \to (H^{n-1}/N, e^*/N), \overline{n}_2(x) = \mathcal{P}(N, x, e)$ is a strong epimorphism of n-ary P- H_v -groups which is called the n-ary natural epimorphism;
 - (iv) the below diagram is commutative:

$$\begin{array}{ccc} (H,\cdot) & \stackrel{\overline{n}}{\rightarrow} & (H/N,\cdot) \\ \downarrow & I_H & & \downarrow \varphi \\ (H,e^*) & \stackrel{\overline{n}_2}{\rightarrow} & (H^{n-1}/N,e^*/N) \end{array} ,$$

where $(H,\cdot) \xrightarrow{\overline{n}} (H/N,\cdot)$ is the natural epimorphism.

Proof. (i)

$$I_H(xy) = xy$$

$$= xy \underbrace{e \cdots e}_{n-2}$$

$$= e^*(x, y, e)$$

$$= e^*(I_H(x), I_H(y), e).$$

(ii) Suppose Nh_1 , $Nh_2 \in H/N$. Then

$$\Leftrightarrow Nh_1 = Nh_2$$

$$\Leftrightarrow \mathcal{P}(N, h_1, e.) = \mathcal{P}(N, h_2, e.)$$

$$\Leftrightarrow \varphi(Nh_1) = \varphi(Nh_2).$$

Therefore φ is a one-one function. For $Nh_1, Nh_2 \in H/N$ we have

$$\varphi(Nh_1.Nh_2) = \varphi(Nh_1h_2)
= \mathcal{P}(N, h_1h_2, e.)
= e^*/N(\mathcal{P}(N, h_1, e.), \mathcal{P}(N, h_2, e.), \mathcal{P}(N, e.).).$$

So φ is a (2, n)-homomorphism. Also φ is onto. (iii)

$$\overline{n}_2(e^*(x_1^n)) = \overline{n}_2(x_1 \cdots x_n)
= \mathcal{P}(N, x_1 \cdots x_n, e.),
= e^*/N(\mathcal{P}(N, x_1, e.), \cdots, \mathcal{P}(N, x_n, e.))
= e^*/N(\overline{n}_2(x_1), \cdots, \overline{n}_2(x_n)).$$

(iv) It is straightforward.

Corollary 3.23. If $k, m, n \in \mathbb{N}_0$, then $\mathbb{Z}^{n-1}/k\mathbb{Z}$ and $\mathbb{Z}^{m-1}/k\mathbb{Z}$ as n-ary and m-ary groups respectively are isomorph.

Proof. By (ii) of Theorem 3.22, it is clear.

Theorem 3.24. Let $\{e\} \to H \xrightarrow{f} K \xrightarrow{g} L \to \{e\}$ be a short exact sequence of groups, $n_1 \leq n_2 \leq n_3$ and $e \in P \subseteq H$, $Q \subseteq K$, $R \subseteq L$ such that f(P) = Q, g(Q) = R. Then the sequence

$$\{e\} \to (H, P^*) \to (K, Q^*) \to (L, R^*) \to \{e\}$$
 (*)

is a short exact sequence of (n_1, n_2, n_3) -ary P- H_v -groups.

Proof. Because $e \in P$,

$$e = f(e) \in f(P) = Q$$
 and $e = g(e) \in g(Q) = R$.

By (ii) of Lemma 2.4, (H, P^*) , (K, Q^*) , (L, R^*) are n-ary P- H_v -groups. By (ii) of Lemma 3.9, all maps in (*) are homomorphisms of n-ary P- H_v -groups.

References

- 1. P. Corsini, Prolegomena of hypergroup theory, Second edition, Aviain editor (1993).
- 2. B. Davvaz and T. Vougiouklis, n-Ary hypergroups, Iranian Journal of Science and Technology, Transaction A, Vol. 30, No. A2, (2006).
- 3. W. Dornte, Unterschungen uber einen uerallgemeinerten gruppenbe griff, ath. Z., 29 (1929),
- W. A. Dudek, Idempotents in n-ary semigroups, Southeast Asian Bull. Math., 25 (2001), 97-104.
- W. A. Dudek, On some old and new problems in n-ary groups, Quasigroups and Related Systems, 8 (2001), 15-36.
- 6. W. A. Dudek, Remarks on n-groups, Demonstratio Math., 13 (1980), 165-181.
- M. Ghadiri, B. N. Waphare and B. Davvaz, n-ary H_v-Structures, Southeast Asian Bulletin of Mathematics, to apear.
- F. Marty, Sur une generalization de la notion de group, 8th Congress Math. Scandenaves, Stockholm, (1934), 45-49.
- S. Spartalis, On the number of H_v-rings with P-hyperoperations, Discrete Mathematics, 155 (1996), 225-231.
- 10. S. Spartalis and T. Vougiouklis, The fundamental relation on H_v -rings, Divista Di Matematica Pura Ed Application N. 14(1994), 7-20.
- 11. T. Vougiouklis, Generalization of P-hypergroups, Rent. de Circolo Math, di Palermo, S. II, 36 (1987), 114-121.
- T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Inc., 115, Palm Harber, USA (1994).
- T. Vougiouklis, The fundamental relation on H_v-rings. The general hyperfield. Proc. Fourth Int. Congress on Algebraic Hyperstructures and Appl. (AHA 1990), World Scientific, (1991), 203-211.

Mansour Ghadiri is a Ph.D. student of the Department of Mathematics, University of Pune, India, and is a facalty member of the Department of Mathematics, University of Yazd, Yazd, Iran. His area of interest is algebraic structures.

Department of Mathematics, University of Yazd, Yazd, Iran e-mail: mghadiri@yazduni.ac.ir

B. N. Waphare is a Professor in the Department of Mathematics, University of Pune, India. His research interests are in algebra, graph theory and lattice theory.

Department of Mathematics, University of Pune, Pune, India e-mail: bnwaph@math.unipune.ernet.in