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SPECTRAL ANALYSIS OF TIME SERIES IN JOINT
SEGMENTS OF OBSERVATIONS
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ABSTRACT. Spectral analysis of a strictly stationary r-vector valued time
series is considered under the assumption that some of the observations are
missed due to some random failure. Statistical properties and asymptotic
moments are derived. Asymptotic normality is discussed.
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1. Introduction

The spectral analysis of time series is one of the oldest and most widely used
analysis techniques in the physical sciences. The basic idea behind spectral
analysis is to decompose the variance (covariance) of a time series into a number
of components each one of which can be associated with a particular frequency.
Brillinger (1969), considered the case where, X (¢)(t = 0,+1,...) is a zero mean
r-vector valued strictly stationary time series satisfying a particular assumptions
about the near independence of widely separated values. For the observations
X(@)(t=0,1,...,T— 1), he constructed asymptotically unbiased and consistent
estimates of the matrix of spectral measures, the matrix of covariances and the
matrix of the average of spectral densities. The statistics were based on the
matrix of second order periodograms, see also, Dahlhaus(1985), Ghazal (1999)
and Ghazal and Farag [(1998), (2001)].

When observing a time series at equal spaced intervals of time, it might be
happen that the device being used to observe the series will miss an observation
because of some random failure. The extension to estimate the spectral density
in the case where some observations are missed utilizes an idea introduced by
Jones (1962), who examined the case where a block of observations is periodi-
cally unobtainable. Parzen (1962) developed the theory of amplitude-modulated
stationary processes, and applied this theory to missing data problems (Parzen
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(1963)), considering in detail the case where observations are missed in some pe-
riodic way. The amplitude-modulated series is constructed by replacing missing
observations in the original series by their mean value. Scheinok (1965) consid-
ered the case where an observation is made or not according to the out come of
a Bernoulli trial. Bloomfield (1970) considered the case where a more general
random mechanism is involved. Ghazal and Elhassanein (2004) construct an es-
timate of the spectral density matrix of a strictly stationary r-vector valued time
series with randomly missing observations on non-crossed intervals observations
using periodogram, see also, Ghazal and Elhassanein (2006). In this paper we
will discuss the spectral analysis of a strictly stationary r-vector valued time
series with randomly missing observations in joint segments of observation.

In the paper W, (7, >") will denote an r x r symmetric matrix-valued Wishart
variate with covariance matrix ) and « degree of freedom. Let We(y, > ) de-
note an r x r Hermitian matrix-valued complex Wishart variate with covari-
ance matrix ) and -ydegree of freedom. Let N.(uz,).,,) denote the multi-
variate normal distribution with mean pz and covariance matrix ), , where
7 is an r-vector valued random variable having real-valued components. Let
NE(uz, Y5 7), the complex multivariate normal distribution with mean pz and
covariance matrix ., , where Z is of complex-valued components.

2. Observed series

Let X(t)(t = 0,%1,...) be a zero mean r-vector valued strictly stationary
time series with

E{X(t+u)X ()} = Cxx(u) (1)
and
Z |CXX(U)| =< 00, (2)

where |Cx x (u)|denotes the matrix of absolute values, the bar denotes the com-
plex conjugate and "> denotes the matrix transpose. We may then define fxx(X)
the r x r matrix of second order spectral densities by

fxx()\) = (27()—1 Z Cxx(u) exp(—i)\u), (3)

U=—~00

see Brillinger (2001) P.24.
Using the assumed stationary, we then set down

Assumption I. X(t) is a strictly stationary series all of whose moments exist.
For each j =1,2,...,k— 1 and any k-tuple aq, as, ..., ax we have

Z |u;Cay,....an (U1, oy Uk—1)| < 00,k =2,3,... (4)

Uy - Uk—1
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ai (U1, U2y ooy U—1) = cum{ X, (t + u1), Xap (t + u2), '--aXak(t)}a (5)

(a1,09,...,0 = 1,2, .., 7 U1, U2y oy Up—1,t = 0, 21, . 6 =2, ...).

Because cumulants are measures of the joint dependance of random variables,
(4) is seen to be a form of mixing or asymptotic independence requirement for
values of X(t) well separated in time. If X(t)satisfies Assumption I we may
define its cumulant spectral densities by

,,,,,

faly-..,ak(Al, ) )\k__l) (6)
k-1
271' —k+1 z Ca,l, Wak U], uk_l) exp ( — ZZ )‘juj),
Ui Uk—1 paert

(o0 < A< 00,a1,a9, a5 =1,2,...,7 k= 2,...). If k =2 the cross-spectra
farap (A) are collected together in the matrix fxx (A) of (3).

Assumption IL. ®(t) is bounded, is of bounded variation and vanishes for t < 0,
t > T — 1 that is called data window. Let

@gq;) ail Z H t) exp(—iAt), (7

for —oo < A < o0 and ay, ..., ar = 1,2, vy T

3. Modified series

Let H(t) = {Ha(t)(t =0,%1,...)}a=1,2,..,r De & process independent of X(¢)
such that, for every t

P{H,(t) = 1} = p, P{H,(t) = 0} = g, (8)
note that
E{H,(t)} =p. 9)

The success of recording an observation not depend on the fail of another and
80 it is independent. We may then define the modified series

Y(t) = Ht)X (), )
with components,
Ya(t) = Ho(t)Xa (1), )
where
we{l R

4. Expanded finite Fourier transform in L-joint segments of observa-
tions



936 M. A. Ghazal and A. Elhassanein

Let X(t)(t =0,1,...,T—1) be an observed stretch of data with some randomly
missing observations. Let T = L(N — M) + M, where L, is the number of joint
segments and N, is the length of each segment and M is the length of joint
partes, 0 < M < N then the observations may be represented as

X[UN = M), X[{(N — M) +1], .. X[({+ )(N = M)+ M 1], =0,1,.., L— L.

The expanded finite Fourier transform of a given stretch of data, is defined by

(+1)(N=M)+M~1 2
dN=M 0 = [ on Y o[t — I(N — M) (13)
t=l(N-M)
(I+1)N-1
x Y Rt —UN — M) exp(—ir)Y (t),
t=IN

where —00 < )\ < 00, and ®(¢t) is the data window satisfies Assumption II.
In this section we will study the statistical properties of the modified series,
the expanded finite Fourier transform and the modified periodograms.

Theorem 4.1. Let X(t)(t = 0,£1,...) be a strictly stationary r-vector valued

time series with mean zero, and satisfy Assumption I. Let dl(N M)( A) be defined
as (18), and ®4(t) satisfy Assumption II, fora=1,2,...,r. Then

E{d{N =" (\)} =0, (14)
Cou {di¥=20(0), &) (- x3)}

= p*Rap(1,1)®, I(N M) ()\1 + X2) far(M) +O(N~1),a # b (15)

Cou {dlM=20(x,), d¥=20(=X2) } = paCaa(0) Raa 1, DEL ) (1 + Xo)
+ PP Raa(l D25y T (O + X0) faa(1) + O(NTY), (16)
at A1 =X = A
Cov {df}N-M>(A) d“N‘M)(-—A)}
= p*Rap(, )% " (0) fas(Ma) + OV ) (17)
where O(N 1) is uniform in A as N — oo.
Cum{dflll(N_M)()\l),---,df{“(N—M)( k)}

= (2m)5 0 Ray.can by o 1)), ak(ZAJ) (18)

j=1

k
><exp( ’le N — M Z/\] fa,lag QK )‘la )+O(N_§)
j=1
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—ky . . .
where O(N~7%) is uniform in A1, Ag, ..., Ay—1 a8 N — 00, k =2, ... and

(41 (N=M)+M~1 3

Rapai(lty o ly) = ( >, @ﬁl[tl—l(N~M)])

t1=l1(N—-M)

(le-+1){N—M)+M~1
X

> ®F, [t — I(N - M)])

ta=lx (N~ M)

Proof. The proof of (14) comes directly from (13). Since E{Y(t)} =0,

Cov {dng-m(Al), dé(N‘M)(—)\z)}

= B {di™ 20 (\)d M0 (0g) }
(1) (N—-M)+M—1
- (27r)‘1RabE{ 3 Bafty — UN ~ M)] exp(—idit:)Ya(t1).
t1=l(N-M)
(1) (N—M)+M—1
3 Bty — I(N — M)] exp(——i)\ztz)Yb(tz)}

to=l(N—-M)
(+D)(N-M)+M~1
=@mTRa| Y Balt— N~ M)Bft— (N - M)]
t=l(N~M)

x exp(—i(A1 + A)t) E{Ya(H)Y5(t)}
(I+1)(N=M)+M—1 (I4+1)}(N—M)+M—1
+ > 3 ®qts — N — M)|@4fta — IN — M)]
t=U(N-M) # ta=l(N—M)

x exp(=i(\its + Aat2) E{Ya(t1)Ys(12)}]
Let @ = b. Then

Cov {20 (xy), di¥ = (—y)}

= (27) 'PRaaCaa(0)BXY M) (A1 + X2)
(I41)(N=M)+M—1 (I+1)(N— M)+ M~1
+(27r)—1p2Raa Z Z @a[tl — l(N — M)]
f=UN-M) #  ta=I(N—M)
x®plta — I(N — M)] exp(—i(A1ty + Aota)Caa(ts — t2).
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let t; —ty = u, u#0, to =1, and by Assumption II and Lemma (4.1) in Ghazal
and Elhassanein(2004), then

Cov {ngV—M)(Al), dUN—M) (—/\2)}

= (27) " 'pRaaCaa(0)@LY ™ (A1 + Xo)
I+ N-M)+M -1

+(27) T p? R @ WM (A + \y) Z exp(—iA11)Cao(u)
0Fu=—(N—M+1)

+O(N7Y)

by (3) the proof of (16) is completed. We can get the proof of (15) and (17) by
the same structure in (16). Since

Cum{d2N=M)(\y), ..., dM=) (y 1}

1
2

(L +1)(N—M)+M -1
- 0um{ or 3 B2 [t — Iy (N — M)]

t1=11 (N—M)
(+1)(N=M)+M—-1
X Z @4, {t1 — L1(N — M) exp(—iAt1)Yy, (t1), .0y
ta=ly (N—M)

_1
7

(L +1)(N=M)+M -1
27

DO ACE M>1)

te=lr (N—M)
(ly+1)(N=M)+M-1
N > By, [tk — (N = M)] exp(=idty )Y, (tx)}
te=lk(N—M)
(Li+1)y(N=M)+M -1 ~1
— (2n)"°% > ®2 [t; — L1 (N — M)]
t1=l (N-M)

e+ 1) (N=M)+M—-1 3
X... > @2 [ty — (N — M)
te=l(N—-M)
(L+D)(N=M)+M~1  (L+1)}(N=M)+M—1
X > > By, [t — (N — M)]
ty=l; (N-M) th=ly(N—M)
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k
X.ooo X (I)ak [tk hnd lk(N - M)} exp (f’bz )\jtj) C’um{Yal (tl), ak(tk)}

i=1
(GHIUN-M)+M~1 (e F I N-M)+M-1
k
= (2W>"7Ra1~-ak Z Z q)ai[tl - ll{N - M)]
t1=l1(N“M) tkzlk(N_M)

X.oo X g, [te — (N — M)] exp ("Z)‘ tj) ap (B = Chey ooy b1 — Tie),

j=1

let t; — [j(N — M) =uj, j =1,..,k— 1 and by Lemma (P.4.1) in Brillinger
(2001) PP. 420 and (6), we get the proof of (18). 0

Corollary 4.1. Under the conditions of Theorem (4.1), we have
E{d{™ (£))} =0,

N=1Cou {ddM(y), ™ (A |
— N”lszabq)uN) (:“:)\j F )\l)fab(:l:Aj) + O(Nd&)’

that tends to 0 as N — oo if A; & )y # 0(mod2), it tends to 2mp*Ray@; (0)
Far(£X;) if £A; = £A(mod2r).
—k - _
N-ECum {diN M (Ay,), oy Y M (N, ) |
= N7H@m) 5 R, BT (N (D) £ . 20, (T)

Xfalag.;.ak (iAh (T)’ eeey i)\jk (T)) + 0( )!
that tends to 0 as N — oo if k > 2.

Proof. The proof comes directly by Theorem (4.1). 0

Theorem 4.2. Let X(t)(t = 0,%1,....) be a zero mean strictly stationary r-
vector valued time series satisfy Assumption I and d§,T) (A;) be given by (13).

Suppose 2, \; £ A # O(mod27) for 1 £ j <k <J.

Then d5V")(Xj), A; # O(mad2r), 5 = 1,2,...J are asymptotically indepen-
dent Nc(o 27rp2Rabc1>‘(N M)(o)fab(Aj)), variates. Alsoif A =0, %2, ....d% ()
is asymptotically Ny (0, QWpZRQbQL(;V -M) (0) fab()\)> independent of previous vari-
ates and if A\ = £m, £37... is asymptotically N, (0, 27rp2Rab<I>i(bN "M)(O) fab()\)>

independent of previous variates.

Proof. The proof comes directly by Corollary (4.1). OJ
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5. The smoothed spectral density estimate

Using expanded finite Fourier transform (13), we construct the modified pe-
riodogram as

VM (3 = (0 Rap®(0))1d4N =20 (M) T =M (3 (19)

a

where the bar denotes the complex conjugate. The smoothed spectral density
estimate is constructed as

L
Doy Z N=M) 3y 0 b=1,2,. (20)
=0

hl

Theorem 5.1. Let X(t)(t = 0,=£1,....) be a strictly stationary r-vector valued
time series with mean zero, and satisfy Assumption I.

Let Ix(,TY( ) = {Iab (M)}a,p=1,2,...,r be given by (19), and D, (t) satisfy Assump-
tion II fora =1,2,...,r. Then

E{ISTM N} = fa(3) +O(N1),p = 1, (21)

COU{II(N—M)()\ ), Jiv= M)()\ )}

a1b; azbz

{N-M UN-M
= (Ra1b1Ra2b2¢a(lb1 )(O) a,(2 [ )(O)>

% [ Rason Bonn @72 (01 = X)200 D (At = Xa) fasan (M) fia (M)

+Rayby Royaa @0 (1 + A2)85N M (0 4 209) farba (M) Frran (= 1)

alb blaz
(N-M)
+(27")Ra1b1a2bzcba(1b1a2b2(O)falblazbz(’\la >‘1>)‘2):|+O(N 1) (22)
Cum {1200 (Ay), .., T (3 )}
arb Yt Tarb k
~1 &
(HR% 2% ) ) S { T Russ oV — 303 s 25
j=1 j=1
<@ (g +% }{Hf% e }+0<N*1) (23)

where the summation extends over all partitions {{c1, 1), (d1,7)}, ..., {(ck, i),
(dksYk)}, into pairs of the quantities (ay, A1), (b1, —A1), ..., (Qk, )\k) (bk, —Ak) €x-
cluding the case with y; = —v; = Ay, for some j,m, where O(N~1) is uniform
in )\1, ceey /\k-

Proof. By (5.1), we have
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UN-M UN-M - - TUN—M) ;\\q
BISMMN} = (PRa® ™ (0)) BN M ()d M ()}

- N-M
= Cov {dNM ), a0y},

and then by (15) the proof of (21) is completed. From (19), and by Theorem
(2.3.2) in Brillinger (2001) PP.21, we have

Cou {II(N M) (1), I Jlv- M)(/\ 1

a1b1 1 tagby
= Coo{di¥ =2 ()M (=00), diV =20 )N M ()}
Cum{di" =), dy =) (=A0), V=10 (2g), VM (< ag)}
(N - lN M WN-M) I(N-M)
+Cov{d{ =" (A1), diN M (Ag)}Cov{dy" ™ (=)1), di ™ (= 22)}
+Cov{dN™ M>(/\1>,déi” A Conld (), 8N 0.
By Theorem (4.1) the proof of (22) is completed. From (19), we have
wnd g ™00, Tt )}

a1b1 " akbk

= _2k HRa. a b O)

xcum{dbe‘M)(Al)db’:‘”"”><~/\1> e O

e s 7%

By Theorem (2.3.2) in Brillinger (2001) PP.21, we get
Cum {30 ()N () N30 )als V0, )

ooy Ygp

= Z Cum{d“N=M(\);i € n}..Cum{d*N-"M(\)i e Vst

where the summation extends over all indecomposable partitions v = [US_,v;] €
I, I=(a1,...,ak; b1, ..., b), 1 < s < k of the transformed table

(a1, 1), (b1, —A1) {(e1, 1), (di,m)}
(a2, A2), (b2, —A2) {(c2,p2), (d2,72)}

—

(0, Ak), (B, —Ae)  {(ero i) (diy )}
Then, by Theorem (4.1), we get the proof of (23). 0

Theorem 5.2. Let X(t)(t = 0,%1,....) be a strictly stationary r-vector val-
ued time series with mean zero, and satisfy Assumption I. Let I{ﬁg“M)()\) =
(VM (N} abmt0,. 0 be given by (19)2X;,A; + Ay # O(mod2r)for 1 < j <
k S J and @,(t) satisfy Assumption II fora =1,2,...,7,.

Then I)l/()IY_M)()\j), J=1,2,..J are asymptotically independent WE(1, fxx(A;))
variates. Alsoif A = 4w, +3x... then Igg_M)()\) is asymptotically W, (1, fxx()))
independent of the previous variates.
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Proof. The proof comes directly from Theorem (4.2), for more details about
Wishart distribution see Anderson (1972). O

Theorem 5.3. Let X(t)(t = 0,+1,....) be a strictly stationary r-vector valued

time series with mean zero, and salisfy Assumption I Let fg)()\) be given by
(20), a,b=1,2,...,r,. Then

E{fT (N} = fa(\) +O(NY), (24)

Cou{ 15, 0n), 15, 00)}

1 L-1L-1
= (Lz(ﬁg‘l @gl:b)z ) Z Z a1b1 lla ll azbz(l2al2))
11=0l3=0
x [Ralaz(zl,12)Rb1b2(l1,12)®g’jgz (M = A2)@) (A1 — X2)
x exp(—il2(N = M)(A1 = A2)) faraz (A1) forba (= A1) (25)

+Rayby (s l2) Royas (1, 12) @, (A1 + A2) 85 (A + Ag)
x exp(—ilz(N — M)(A + A2)) farb5 (A1) foras (— A1)
+(2W)Ra1b1a2bz (lla Lyl l2)(I)5111Vb)1a2b2 (O)fmblazbz (>‘1: —A1, /\2)] + O(N_l)

Proof. By (20), we have

sl - E {0}

then by (21) the proof of (24) is completed. From (20), we get

COU{fgglw R0}

L-1L-1
[N=M) () =0
L2 Z Z Co { a1by )’Iazbz ()‘2)}
11=0 I,=0
Which completes the proof of (25). ad

Theorem 5.4. Let X(t)(t = 0,%1,....) be a strictly stationary 7-vector valued
time series with mean zero, and satisfy Assumption I. Let fL(N M)( A) be given
by (20), a,b = 1,2,...,7, 2X;,\; £ M\ Z O(mod27) for 1 < j < k < J, Then
L fl(N M)( A;), 5 =1,2,..J are asymptotically independent W7(L, fap(};)) vari-

ates. Also if A = £m, 3., then Lfl(N M)( A) is asymptotically Wr(L, fap(X))
independent of the previous variates.
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Proof. The proof comes directly by Theorem (5.2) and Theorem (7.3.2) in An-
derson (1972) PP.162.
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11.

12.

13.

14.
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