WEAK AND CONCRETE FILTERS OF WFI-ALGEBRAS

YOUNG BAE JUN

ABSTRACT. The notion of weak filters in WFI-algebras is introduced. Relations between weak filters and concrete filters are established. A condition for a filter to be closed is given. Also, a condition for a filter to be a weak filter is provided. Characterizations of weak and concrete filters are discussed. A condition for a subalgebra to be a concrete filter is given.

AMS Mathematics Subject Classification: 03G25, 03C05, 08A05 Key words and Phrases: (medial, simulative) WFI-algebra, subalgebra, strong unit, (weak, concrete) filter.

1. Introduction

In 1990, W. M. Wu [6] introduced the notion of fuzzy implication algebras (FI-algebra, for short), and investigated several properties. In [5], Z. Li and C. Zheng introduced the notion of distributive (resp. regular, commutative) FI-algebras, and investigated the relations between such FI-algebras and MV-algebras. In [1], the present author discussed several aspects of WFI-algebras. He introduced the notion of associative (resp. normal, medial) WFI-algebras, and investigated several properties. He gave conditions for a WFI-algebra to be associative/medial, and provided characterizations of associative/medial WFI-algebras, and showed that every associative WFI-algebra is a group in which every element is an involution. He also verified that the class of all medial WFI-algebras is a variety. Y. B. Jun and S. Z. Song [4] introduced the notions of simulative and/or mutant WFI-algebras and investigated some properties. They established characterizations of a simulative WFI-algebra, and gave a relation between an associative WFI-algebra and a simulative WFI-algebra. They also found some types for a simulative WFI-algebra to be mutant. Jun et al. [3]

Received November 2, 2007. Accepted January 17, 2008.

This work was supported by the fund of Research Promotion Program (RPP-2007-042), Gyeongsang National University.

^{© 2008} Korean SIGCAM and KSCAM .

introduced the concept of ideals of WFI-algebras, and gave relations between a filter and an ideal. Moreover, they provided characterizations of an ideal, and established an extension property for an ideal. In [2], the present author discussed perfect and concrete filters. In this paper, we introduce the notion of weak filters in WFI-algebras. We establish relations between weak filters and concrete filters. We give a condition for a filter to be closed. We also provide a condition for a filter to be a weak filter. We discuss characterizations of weak and concrete filters, and we give a condition for a subalgebra to be a concrete filter.

2. Preliminaries

Let $K(\tau)$ be the class of all algebras of type $\tau = (2,0)$. By a WFI-algebra we mean a system $\mathfrak{X} := (X, \ominus, 1) \in K(\tau)$ in which the following axioms hold:

- (a1) $(x \in X)$ $(x \ominus x = 1)$,
- (a2) $(x, y \in X)$ $(x \ominus y = y \ominus x = 1 \Rightarrow x = y),$
- (a3) $(x, y, z \in X)$ $(x \ominus (y \ominus z) = y \ominus (x \ominus z)),$
- (a4) $(x, y, z \in X)$ $((x \ominus y) \ominus ((y \ominus z) \ominus (x \ominus z)) = 1)$.

We call the special element 1 the *unit*. For the convenience of notation, we shall write $[x, y_1, y_2, \dots, y_n]$ for

$$(\cdots((x\ominus y_1)\ominus y_2)\ominus\cdots)\ominus y_n.$$

We define $[x,y]^0 = x$, and for n > 0, $[x,y]^n = [x,y,y,\cdots,y]$, where y occurs n-times. We use the notation $x^n \ominus y$ instead of

$$x \ominus (\cdots (x \ominus (x \ominus y)) \cdots)$$

in which x occurs n-times.

Proposition 2.1. [1] In a WFI-algebra \mathfrak{X} , the following are true:

- (b1) $x \ominus [x, y]^2 = 1$,
- (b2) $1 \ominus x = 1 \Rightarrow x = 1$,
- (b3) $1 \ominus x = x$,
- $(b4) \ x\ominus y=1 \Rightarrow (y\ominus z)\ominus (x\ominus z)=1, (z\ominus x)\ominus (z\ominus y)=1,$
- (b5) $(x\ominus y)\ominus 1=(x\ominus 1)\ominus (y\ominus 1),$
- (b6) $[x, y]^3 = x \ominus y$.

A nonempty subset S of a WFI-algebra $\mathfrak X$ is called a *subalgebra* of $\mathfrak X$ if $x\ominus y\in S$ whenever $x,y\in S$. A nonempty subset F of a WFI-algebra $\mathfrak X$ is called a *filter* of $\mathfrak X$ if it satisfies:

- (c1) $1 \in F$,
- (c2) $(\forall x \in F) \ (\forall y \in X) \ (x \ominus y \in F \Rightarrow y \in F).$

A filter F of a WFI-algebra $\mathfrak X$ is said to be closed [1] if F is also a subalgebra of $\mathfrak X$.

Proposition 2.2. [1] Let F be a filter of a WFI-algebra \mathfrak{X} . Then F is closed if and only if $x \ominus 1 \in F$ for all $x \in F$.

Proposition 2.3. [1] In a finite WFI-algebra, every filter is closed.

We now define a relation " \preceq " on $\mathfrak X$ by $x \preceq y$ if and only if $x \ominus y = 1$. It is easy to verify that a WFI-algebra is a partially ordered set with respect to \preceq . A WFI-algebra $\mathfrak X$ is said to be associative [1] if it satisfies $[x,y,z]=x\ominus(y\ominus z)$ for all $x,y,z\in X$. A WFI-algebra $\mathfrak X$ is said to be medial [1] if it satisfies

$$(x \ominus y) \ominus (a \ominus b) = (x \ominus a) \ominus (y \ominus b)$$

for all $x, y, a, b \in X$. For a WFI-algebra \mathfrak{X} , the set

$$\mathcal{S}(\mathfrak{X}) := \{x \in X \mid x \leq 1\}$$

is called the *simulative part* of \mathfrak{X} . A WFI-algebra \mathfrak{X} is said to be *simulative* [4] if it satisfies

(S)
$$x \leq 1 \Rightarrow x = 1$$
.

Note that the condition (S) is equivalent to $S(\mathfrak{X}) = \{1\}.$

Proposition 2.4. [4] The simulative part $S(\mathfrak{X})$ of a WFI-algebra \mathfrak{X} is a filter of \mathfrak{X} .

3. Weak and concrete filters

In what follows, let \mathfrak{X} denote a WFI-algebra unless otherwise specified.

Definition 3.1. The unit 1 in \mathfrak{X} is said to be *strong* if it satisfies:

$$(\forall x \in X) (x^2 \ominus 1 = 1). \tag{3.1}$$

Proposition 3.2. If the unit 1 is strong, then every filter of \mathfrak{X} is closed.

Proof. Let F be a filter of \mathfrak{X} . For any $x \in F$, we have $x^2 \ominus 1 = 1 \in F$. It follows from (c2) that $x \ominus 1 \in F$. Hence F is a closed filter of \mathfrak{X} by Proposition 2.2. \square

Proposition 3.3. Every filter F of \mathfrak{X} that contains the simulative part of \mathfrak{X} satisfies the following implication.

$$(\forall x \in X) (\forall y \in F) (x \leq y \Rightarrow x \in F). \tag{3.2}$$

Proof. Let F be a filter of \mathfrak{X} such that $S(\mathfrak{X}) \subseteq F$. Let $x \in X$ and $y \in F$ satisfy $x \leq y$. Then $x \ominus y = 1$ and so

$$y \ominus x \preceq (x \ominus y) \ominus (y \ominus y) = (x \ominus y) \ominus 1 = 1 \ominus 1 = 1.$$

Hence $y \ominus x \in \mathcal{S}(\mathfrak{X}) \subseteq F$. Since $y \in F$, it follows from (c2) that $x \in F$.

Proposition 3.4. Let F be a filter of \mathfrak{X} that satisfies the following implication.

$$(\forall x \in X) (x \le 1 \Rightarrow x \in F). \tag{3.3}$$

Then F contains the simulative part of \mathfrak{X} .

Proof. Straightforward.

Corollary 3.5. Let F be a filter of \mathfrak{X} . Then the following are equivalent.

- (i) F contains the simulative part of \mathfrak{X} .
- (ii) $(\forall x \in X) \ (\forall y \in F) \ (x \leq y \Rightarrow x \in F)$.

Definition 3.6. A filter F of \mathfrak{X} is said to be weak if it satisfies:

$$(\forall x \in F) (\forall y \in X \setminus F) (y \ominus x \in X \setminus F). \tag{3.4}$$

Example 3.7. Let $X = \{1, a, b, c, d, e, x, y, z\}$ be a set with the following Cayley table:

		a							
		\overline{a}							
a	1	1	b	b	d	e	\boldsymbol{x}	\boldsymbol{x}	z
b	1	a	1	a	d	d	\boldsymbol{x}	y	\boldsymbol{z}
c	1	1	1	1	d	d	\boldsymbol{x}	\boldsymbol{x}	z
d	d	d	e	e	1	b	z	z	\boldsymbol{x}
e	d	d	d	d	1	1	\boldsymbol{z}	z	\boldsymbol{x}
\boldsymbol{x}	\boldsymbol{x}	y	\boldsymbol{x}	y	z	z	1	a	d
y	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{z}	z	1	1	d
z	z	z	z	z	\boldsymbol{x}	\boldsymbol{x}	d	d	1

Then $\mathfrak{X}:=(X,\ominus,1)$ is a WFI-algebra. Note that $F_1:=\{1,a,b,c,x,y\}$ and $F_2:=\{1,a,b,c,d,e\}$ are weak filters of \mathfrak{X} , but the set $F_3:=\{1,a,d\}$ is not a weak filter of \mathfrak{X} .

Theorem 3.8. Every weak filter of \mathfrak{X} contains the simulative part $\mathcal{S}(\mathfrak{X})$ of \mathfrak{X} .

Proof. Let F be a weak filter of \mathfrak{X} . Let $x \in \mathcal{S}(\mathfrak{X})$. If $x \notin F$, then $x \ominus 1 \notin F$ by (3.4). But $x \in \mathcal{S}(\mathfrak{X})$ implies $x \ominus 1 = 1 \in F$, a contradiction. Hence $x \in F$, and so $\mathcal{S}(\mathfrak{X}) \subseteq F$.

Corollary 3.9. Every weak filter F of \mathfrak{X} satisfies (3.2).

Theorem 3.10. Let F be a closed filter of \mathfrak{X} . If F contains the simulative part $S(\mathfrak{X})$ of \mathfrak{X} , then F is weak.

Proof. Let F be a closed filter of \mathfrak{X} that contains the simulative part $\mathcal{S}(\mathfrak{X})$ of \mathfrak{X} . Let $x \in F$ and $y \in X \setminus F$. If $y \ominus x \in F$, then $[y, x]^2 \in F$ since F is closed. Since $y \ominus [y, x]^2 = 1$, it follows from (b4) and (a1) that

$$1 = ([y, x]^2 \ominus y) \ominus (y \ominus y) = ([y, x]^2 \ominus y) \ominus 1.$$

Hence $[y,x]^2 \ominus y \in \mathcal{S}(\mathfrak{X}) \subseteq F$, and so $y \in F$. This is a contradiction, and thus $y \ominus x \in X \setminus F$. Therefore F is weak.

The following is a characterization of a weak filter.

Theorem 3.11. A filter F of \mathfrak{X} is weak if and only if it satisfies:

$$(\forall x, y \in X) (x \ominus y \in F \& y \in F \Rightarrow x \in F). \tag{3.5}$$

Proof. Assume that F is a weak filter of \mathfrak{X} . Let $x,y\in X$ be such that $x\ominus y\in F$ and $y\in F$. If $x\notin F$, then $x\ominus y\notin F$ by (3.4). This is a contradiction. Hence $x\in F$. Conversely let F be a filter of \mathfrak{X} in which the condition (3.5) is valid. Let $x\in F$ and $y\in X\setminus F$. Suppose $y\ominus x\in F$. Then $y\in F$ by (3.5), a contradiction. Hence $y\ominus x\in X\setminus F$, and F is weak.

Definition 3.12. [2] A nonempty subset F of \mathfrak{X} is called a *concrete filter* of \mathfrak{X} if it satisfies (c1) and

$$(\forall x, z \in X) (\forall y \in F) ((x \ominus y) \ominus (x \ominus z) \in F \Rightarrow z \in F). \tag{3.6}$$

Note that every concrete filter of \mathfrak{X} is a filter of \mathfrak{X} , but the converse is not true in general (see [2]).

Lemma 3.13. The simulative part $S(\mathfrak{X})$ of \mathfrak{X} is a concrete filter of \mathfrak{X} .

Proof. Let $x, y, z \in X$ be such that $y \in \mathcal{S}(\mathfrak{X})$ and $(x \ominus y) \ominus (x \ominus z) \in \mathcal{S}(\mathfrak{X})$. Using (a3) and (a4), we have

$$(y\ominus z)\ominus ((x\ominus y)\ominus (x\ominus z))=(x\ominus y)\ominus ((y\ominus z)\ominus (x\ominus z))=1.$$

Putting $w = (x \ominus y) \ominus (x \ominus z)$ and using (a1) and (b4), we obtain

$$(w\ominus(y\ominus z))\ominus 1=(w\ominus(y\ominus z))\ominus(w\ominus w)=1,$$

i.e., $((x\ominus y)\ominus(x\ominus z))\ominus(y\ominus z) \leq 1$. Hence $((x\ominus y)\ominus(x\ominus z))\ominus(y\ominus z) \in \mathcal{S}(\mathfrak{X})$. Since $\mathcal{S}(\mathfrak{X})$ is a filter of \mathfrak{X} (see Proposition 2.4), it follows from (c2) that $z \in \mathcal{S}(\mathfrak{X})$. Therefore $\mathcal{S}(\mathfrak{X})$ is a concrete filter of \mathfrak{X} .

Theorem 3.14. Let F be a filter of \mathfrak{X} . Then F is concrete if and only if $\mathcal{S}(\mathfrak{X}) \subseteq F$.

Proof. Assume that F is a concrete filter of \mathfrak{X} . Let $x \in \mathcal{S}(\mathfrak{X})$. Then $x \ominus 1 = 1$, and so

$$(x \ominus 1) \ominus (x \ominus x) = 1 \ominus 1 = 1 \in F.$$

It follows from (3.6) that $x \in F$. Hence $\mathcal{S}(\mathfrak{X}) \subseteq F$.

Conversely, suppose $\mathcal{S}(\mathfrak{X}) \subseteq F$. Let $x, y, z \in X$ be such that $y \in F$ and $(x \ominus y) \ominus (x \ominus z) \in F$. By the similar argument as the proof of Lemma 3.13, we have

$$((x \ominus y) \ominus (x \ominus z)) \ominus (y \ominus z) \in \mathcal{S}(\mathfrak{X}) \subseteq F.$$

Since F is a filter of \mathfrak{X} , it follows from (c2) that $z \in F$. Hence F is a concrete filter of \mathfrak{X} .

Combining Lemma 3.13 and Theorem 3.14, we know that the simulative part $S(\mathfrak{X})$ of \mathfrak{X} is the least concrete filter of \mathfrak{X} .

Lemma 3.15. [2] A filter F of \mathfrak{X} is concrete if and only if it satisfies the following implication.

$$(\forall x \in X) ([x, 1]^2 \in F \Rightarrow x \in F). \tag{3.7}$$

Theorem 3.16. Every weak filter is a concrete filter.

Proof. Let F be a weak filter of \mathfrak{X} . Let $x \in X$ be such that $[x,1]^2 \in F$. Since $x \ominus [x,1]^2 = 1 \in F$, it follows from Theorem 3.11 that $x \in F$. Hence F is a concrete filter of \mathfrak{X} by Lemma 3.15.

Let \mathbb{Z} be the set of integers. Then $\mathfrak{Z} := (\mathbb{Z}; \preceq, 0)$ is a simulative WFI-algebra, where $x \preceq y = y - x$ for all $x, y \in \mathbb{Z}$. Note that $F := \{0, 1, 2, 3, \cdots\}$ is a concrete filter of \mathfrak{Z} which is not a weak filter of \mathfrak{Z} . This shows that the converse of Theorem 3.16 is not true in general.

Denote by $r_c(\mathfrak{X})$ the set

$$r_c(\mathfrak{X}) := \bigcap_{\alpha \in X} r_c(\alpha),$$

where $r_c(\alpha) := \{x \in X \mid x \leq \alpha \Rightarrow x = \alpha\}$. The doubly simulative part of \mathfrak{X} is defined to be the set (see [3])

$$\mathcal{D}S(\mathfrak{X}) := \{ x \in X \mid [x, 1]^2 = x \}.$$

Note that $\mathcal{D}S(\mathfrak{X})$ is a subalgebra of \mathfrak{X} (see [3]).

Lemma 3.17. We have the following assertions:

- (i) $r_c(\mathfrak{X}) = \mathcal{D}S(\mathfrak{X})$.
- (ii) \mathfrak{X} is simulative if and only if $X = r_c(\mathfrak{X})$.

Proof. (i) Let $x \in r_c(\mathfrak{X})$. Since $x \leq [x, 1]^2$ by (b1), we have $x = [x, 1]^2$. Therefore $x \in \mathcal{D}S(\mathfrak{X})$. Conversely, let $x \in \mathcal{D}S(\mathfrak{X})$ and $y \in X$ be such that $x \leq y$. Then

$$y \ominus x = y \ominus [x,1]^2 = (x \ominus 1) \ominus (y \ominus 1)$$

= $(x \ominus 1) \ominus (y \ominus (x \ominus y))$
= $(x \ominus 1) \ominus (x \ominus 1) = 1$,

and so x = y, i.e., $x \in r_c(\mathfrak{X})$.

(ii) If \mathfrak{X} is simulative, then $X = \mathcal{D}S(\mathfrak{X}) = r_c(\mathfrak{X})$ by [4, Theorem 3.4] and (i). The converse is clear.

Note that a subalgebra of \mathfrak{X} may not be a concrete filter of \mathfrak{X} . In the following theorem, we give a condition for a subalgebra to be a concrete filter.

Theorem 3.18. Every subalgebra of \mathfrak{X} is a concrete filter of \mathfrak{X} if and only if the following assertion is valid:

$$(\forall x \in X) (x \neq 1 \Rightarrow x \in r_c(\mathfrak{X}) \setminus \{1\}). \tag{3.8}$$

Proof. Let F be a subalgebra of \mathfrak{X} . Obviously, $1 \in F$. Assume that the assertion (3.8) is valid. Then $X = r_c(\mathfrak{X})$, and so \mathfrak{X} is simulative by Lemma 3.17(ii). Hence \mathfrak{X} is medial by [4, Theorem 3.10]. Thus

$$(x\ominus 1)\ominus (x\ominus y) = (x\ominus x)\ominus (1\ominus y) = 1\ominus y = y \tag{3.9}$$

and

$$(x \ominus y) \ominus (x \ominus z) = (x \ominus x) \ominus (y \ominus z) = 1 \ominus (y \ominus z) = y \ominus z \tag{3.10}$$

for all $x, y, z \in X$. Now let $x, y, z \in X$ be such that $(x \ominus y) \ominus (x \ominus z) \in F$ and $y \in F$. Using (3.9) and (3.10), we get

$$z = (y\ominus 1)\ominus (y\ominus z) = (y\ominus 1)\ominus ((x\ominus y)\ominus (x\ominus z))\in F$$

since F is a subalgebra of \mathfrak{X} . Hence F is a concrete filter of \mathfrak{X} . Conversely, suppose that every subalgebra of \mathfrak{X} is a concrete filter of \mathfrak{X} . Then $r_c(\mathfrak{X})$ is a subalgebra of \mathfrak{X} , and so a concrete filter of \mathfrak{X} . It follows from Theorem 3.14 that $S(\mathfrak{X}) \subseteq F$. Since $DS(\mathfrak{X}) \cap S(\mathfrak{X}) = \{1\}$, we get $S(\mathfrak{X}) = \{1\}$ and $X = r_c(\mathfrak{X})$. This shows that the assertion (3.8) is valid.

REFERENCES

- Y. B. Jun, Weak fuzzy implication algebras, Adv. Stud. Contemp. Math. 7 (2003), no. 1, 41–52.
- Y. B. Jun, Perfect and concrete filters of WFI-algebras, Bull. Korean Math. Soc. 44 (2007), no. 4, 691-699.
- 3. Y. B. Jun, C. H. Park and E. H. Roh, Characterizations of filters and ideals on WFI-algebras, Honam Math. J. 28 (2006), no. 4, 471-484.
- 4. Y. B. Jun and S. Z. Song, Simulative and mutant WFI-algebras, Honam Math. J. 28 (2006), no. 4, 559-572.
- Z. Li and C. Zheng, Relations between fuzzy implication algebra and MV-algebra, J. Fuzzy Math. 9 (2001), no. 1, 201-205.
- 6. W. M. Wu, Fuzzy implication algebras, Fuzzy Systems Math. 4 (1990), no. 1, 56-63.
 - Y. B. Jun has been an educator and research mathematician since 1982, mostly at the Gyeongsang National University. He is now a member of the (associative, advisory) editorial board of Iranian Journal of Fuzzy Systems (Iran), Far East Journal of Mathematical Science (India), Quasigroups and Related Systems (Moldova), Journal of Applied Mathematics & Computing (Korea), Honam Mathematical Journal (Korea). He did post-doctoral work (one year, 1989-90, supported by KOSEF) at the University of Albert in Albert, Canada; and worked for one year (1996-97) as a visiting professor at the Northwest University in Xian, China (supported by LG Yonam Foundation). His research interests focus on the structure theory of BCK/BCI-algebras and related systems, and fuzzy and hyper theory of algebraic structures. He is a co-author of the text BCK-algebras with J. Meng which is an approachable introduction to BCK/BCI-algebras.

Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea.

E-mail: skywine@gmail.com