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AUTOMATIC NEURAL NETWORK SYSTEM FOR
VORTICITY OF SQUARE CYLINDERS WITH DIFFERENT
CORNER RADII
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ABSTRACT. The neural networks (NNs) simulation has been designed to
simulate and predict the vortex wavelength A}, lateral vortex spacing A;,
and normalized maximum vorticity at the vortex center near the wake
of square cylinders with different corner radii. The system was trained
on the available data of the three cases, although this data is very little.
Therefore, we designed the system to work in automatic way for finding the
best network that has the ability to have the best test and prediction. The
proposed system shows an excellent agreement with that of an experimental
data in these cases. The technique has been also designed to simulate the
other distributions not presented in the training set and predicted them
with effective matching.
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1. Introduction

Flow passing a cylindrical body with a corner modification has attracted a
great deal of attention in the literature because of its practical significance in
engineering, e.g., in the designed of tall buildings, tower structure, suspension
bridges, etc. [1-2] investigated numerically and experimentally the aerodynamic
forces on square cylinders. Zheng and Dalton [3] studied numerically the corner
effect in an oscillatory flow. Recently, Dalton and Zheng [4] presented numerical
results for a uniform approach flow past square and diamond cylinders, with and
without corner modifications at Reynolds number 250 and1000. Similar stud-
ies emphasizing corner effects were also conducted by [5-8]. These investigations
largely focused on the effect of corner radii on the aerodynamic or hydrodynamic
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characteristics, such as drag and lift forces, of bluff bodies. How the corner vari-
ation may alter the near wake, however, has yet to be sufficiently documented,
particularly in the base region.

Recently, Hu, Zhou and Dalton [9] studied both qualitative and quantitative
vortex flow fields near wake and then introduce the corner effects on the near
wake flow structure, complementary the data in the literature.

The present work introduce the artificial neural network for modelling the
vortex flow fields; vortex wavelength A, lateral vortex spacing )\; and normalized
maximum vorticity at the vortex center, near wake of square cylinders which
represented by x/d , where x is the distance from center of cylinder and d
is the characteristic dimension of the cylinder. Four cylinders have the same
characteristic dimension d=12.7mm but have different corner radius r, therefore,
we have square cylinder of r/d=0 and three square cylinder with rounded corners
r/d=0.157,0.236 and 0.5 (circular cylinder).

Neural networks are widely used for solving many problems in most science
problems of linear and non-linear cases [10-18]. Neural network algorithms are
always iterative, designed to step by step minimise (targeted minimal error)
the difference between the actual output vector of the network and the desired
output vector, examples include the Backpropagation (BP) algorithm [19-21],
and the Resilient Propagation (RPROP) algorithm [22-24).

BP is the most widely used algorithm for supervised learning with multi-
layered feed-forward networks [25], and it is very well known, while the RPROP
algorithm is not well known and described in some detail in section 2.

The data obtained by [9] is chosen to be carried out using the neural networks
depending on the BP and RPROP algorithms. The RPROP algorithm was faster
than the BP [26-27]. Therefore, the RPROP is chosen to be carried out in this
study. The present work offers an efficient neural network system that is used
to predict the unknown data of the normalized maximum vorticity ( w}), the
vortex wave length (A; ), and the lateral vortex spacing ( A;) near wake of
square cylinders at different corner radii. The rest of paper is organized as
follows; Section 2 describes the trained NN. Section 3 presents the proposed
system. Section 4 shows the obtained results. Finally, Section 5 concludes the
work.

2. Trained neural networks

Neural networks consist of a number of units (neurons) which are connected
by weighted links. These units are typically organised in several layers, namely
an input layer, one or more hidden layers, and an output layer. The input layer
receives an external activation vector, and passes it via weighted connections to
the units in the first hidden layer. Figure (1) shows input layer with R elements,
one hidden layer with S neurons, and ocutput layer with one element. Each
neuron in the network is a simple processing unit that computes its activation

ygl) with respect to its incoming excitation, the so-called net input net;:
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Where denotes the set of predecessors of unit i, w;; denotes the connection weight

from unit to unit, and b; is the unit bias value. The activation of unit i, ygl) is
computed by passing the net input through a non-liner activation function. The

log-sigmoid function is applied in the proposed work as follows.
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FIGURE 1. Network architecture for one hidden layer

In the RPROP algorithm, each weight (w;;) is computed by its individual

update-value (Ag) }, which determines the size of the weight-update. This adap-
tive update-value evolves during the learning process based on its local sight on
the error function E, according to the following learning-rule [22].
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where 0 <~ <1< n*

The size of the weight change is exclusively determined by the weight-specific
update-value Ag;). Every time the partial derivative of the corresponding weight
changes its sign, the update-value is decreased by the factor . This indicates
that the last update was too big and the algorithm jumped over a local minimum.
On the other hand, if the derivative retains its sign the update-value is slightly
increased by the factor n in order to accelerate convergence in shallow regions.
Once the update-value for each weight is adapted, the weight-update is changed
as follows: if the derivative is positive (increasing error) the weight is decreased
by its update-value, if the derivative is negative, the update-value is added.
Then, the weights are updated as in equation (5) using update-values from
equation (4).

(t) faE(t)
Z] )
(t) _ )
Aij = +A§;), if S aE ’ (4)
0, else
1
A =)+ ) o

As mentioned in the Section 1, the RPROP algorithm was faster than the BP,
the main reason for the success using this algorithm is that the size of weight-
step is only dependent on the sequence of signs, not on the magnitude of the
derivative as showed by Riedmiller and Braun [26]. The RPROP algorithm has
fewer parameters that need to be evaluated and promises to provide the same
performance as an optimally trained network using the BP algorithm.

3. Proposed system

The studied problem consists of three depended-parts, the first one is the
normalized maximum vorticity w; with the wake of cylinder, the second is the
vortex wave length A} dependence on the wake of cylinder the wake of cylinder
and the third is the lateral vortex spacing )\; dependence on the wake of cylinder.
Each part contains four groups of data corresponding to four different corner
radii of cylinders. These are square cylinder of r/d=0 and three square cylinder
with rounded corners r/d=0.157, 0.236 and 0.5 (circular cylinder). Each group
has some samples as specified in [9]. The group data which for r/d=0.236 is
specified to be predicted for each part, while the other three groups are chosen
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as patterns for training. The three groups for each part are prepared as input
patterns of the proposed neural network system.

Our problem has two inputs and single output in each part, because there is
only one target value associated with each input vector; see figure (2). These
parts are:

(1) part (1) has two inputs corner radius r/d and distance near wake x/d
and single output which is the normalized maximum vorticity w}

(2) part (2) has two inputs corner radius r/d and distance near wake x/d
and single output which is the vortex wave length (A7)

(3) part (3) has two inputs corner radius r/d and distance near wake x/d
and single output which is the lateral vortex spacing (/\;)

The available data of the three cases is very little and not enough for good
training. The number of elements in each group is different. This affected the
training and prediction process, due to increasing the number of experiments.
Therefore, we have designed the system to work in automatic way for 1000 ex-
periments, this process stops when the best network is obtained. If the last
NN-experiment is reached, the number of neurons of the hidden layer is in-
creased and the process of new 1000 NN-experiment starts again. The system is
continuous until excellent training and prediction is reached. The details of the
proposed system are shown in figure (3).

We have preferred to use the same neural network architecture in the three
cases: the normalized maximum vorticity, the vortex wave length, and the lateral
vortex spacing; see figure (4). The chosen algorithm was first trained up to 5000
epochs for the three cases. The obtained best networks are reached at 1000
epochs for the normalized maximum vorticity part, 564 epochs for the vortex
wave length part, and 554 epochs for the lateral vortex spacing part as described
in figure(5). After the training, it was noticed that the RPROP algorithm using
one hidden layer was very effective using log-sigmoid transfer function in the
hidden layer and a linear transfer function in the output layer. It was found that,
one hidden layer and 10 neurons are enough for reaching the optimal solution
as specified in figure (4). We first set up the network with random weights and
biases values.

Where IW(1,1) represents the input weights, LW (2,1) means the layer weights,
b(1) is the biases of the input layer, and b(2) be the biases of the output layer.
The obtained weights and biases of the best trained network for the normalized
maximum vorticity (w?), the vortex wave length (\}), and the lateral vortex
spacing (A;) are shown in Table 1 (Appendix A).

4. Results
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FIGURE 2. A block diagram modeling

The proposed system was applied and simulated to the data of the normalized
maximum vorticity, the vortex wave length, and the lateral vortex spacing near
wake of square cylinders, with one hidden layer.

The chosen neural network was trained on three cases of different corner radii
ratiosr/d. The values of r/d are 0, 0.157, 0.236, and 0.5. The performances of the
obtained networks are shown in figure (5). The obtained networks were tested
for choosing the best one. This network was tested on the above mentioned three
cases and used for predicting the case at r/d value, 0.236. Figure (6) shows the
neural networks results of the three cases training and one predicted case the
normalized maximum vorticity which denoted by w} with wake distance ratio
x/d . Figure (7) shows also the neural networks results of the three cases training
and one predicted case for the vortex wave length which denoted by A} with x/d.
Figure (8) shows also the neural networks results of the three cases training and
one predicted case for the lateral vortex spacing which denoted by )\; with x/d.
It was observed that these figures illustrate an excellent performance in the
four cases (the training and prediction). These results of the dependence of the
normalized maximum vorticity, the vortex wave length, and the lateral vortex
spacing on x/d at different values of corner radii are presented in the following
three subsections.

4.1 Normalized maximum vorticity

The following figure shows the three cases tested and one predicted data of
the normalized maximum vorticity compared to the experimental data.
4.2 Vortex wave length
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FIGURE 4. The architecture of the proposed network
The following figure shows the three cases tested and one predicted data of

the vortex wave length compared to the experimental data.
4.3 Lateral vortex spacing
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The following figure shows the three cases tested and one predicted data of
the lateral vortex spacing compared to the experimental data.

5. Conclusion

We have designed the system to work in automatic way for finding the best
network that has the ability to have the best test and prediction. This system
did many tries to find the best network used low number of hidden layers and
neurons. It was found that, one hidden layer with 10 neurons are enough for
reaching the optimal solution.

The proposed system shows an excellent agreement with that of an experi-
mental data in the three cases of normalized maximum vorticity, vortex wave
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FIGURE 6. The NN results of the normalized maximum vorticity w}

length, and lateral vortex spacing problems. The NN technique has been also
designed to simulate the other distributions not presented in the training set
and matched them effectively.

The (NNs) simulation using RPROP algorithm is powerful mechanism for
prediction the normalized maximum vorticity, vortex wave length, and lateral
vortex spacing near wake of square cylinder of any suggested corner radii.
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FIGURE 8. The NN results of the lateral vortex spacing A},

The system has the ability to store the obtained networks including the
weighted and biases values; see table (1). Thus provides the system to make
the test and prediction process without retraining again.

Appendix
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Normalized maximum vorticity
Weights Biases
IW(1,1) IW(2,1)7 | b(1) b(2)
—17.4615 | —2.901 | 0.084691 | 21.38 1.0139
22.6727 —2.6198 | 0.48639 —6.6211
14.8643 | 1.2259 | 0.23079 —19.0572
18.4664 —2.4856 | 0.44636 6.8059
—33.9505 | 0.59965 | 0.84365 12.2863
26.1187 | 1.0183 | 0.32035 —13.1328
—7.7975 1.8064 -0.515 ~12.1588
—30.499 | 0.76515 | 0.51687 —2.1574
—6.1247 | 1.8982 | —0.33619 | —16.1924
—1.3998 | —1.3589 | 0.64473 5.2198
Vortex wave length
Weights Biases
IW(1,1) LW(2,1)" | b() b(2)
—29.435 | 0.55979 | 0.2538 —0.49223 | 1.2912
11.3426 | 2.3122 —1.6705 —30.0855
—34.9091 | 0.19371 | 0.53133 9.3987
—5.8674 | 2.6254 —0.34115 | -17.6793
—32.3137 | —0.62179 | 0.54701 10.1782
27.5019 | 1.2187 1.1043 —20.4033
274.8869 | 1.3098 1.3882 ~7.121
—22.3066 | 3.0018 1.4702 —15.2929
~21.8078 | —2.52 1.4821 15,7884
—17.7383 | 1.9386 0.88684 —17.4415
Lateral vortex spacing
Weights Biases
IW(1,1) LW(2,1)" | b(1) b(2)
27.1012 | 1.938 0.22438 -25.6861 | —0.10381
—0.28539 | 2.3925 0.23017 —22.9795
~30.5073 | ~1.9529 | —0.71534 | 20.5754
—17.9806 | 1.5954 —0.22815 | —8.4276
—27.1136 | —1.326 0.63176 17.5767
-35.68 | —0.45708 | 0.4528 9.1394
20.6059 | 3.1778 0.30413 -15.9039
—-17.9799 | 2.1264 0.63356 —13.8881
6.3794 | 1.236 0.061847 —-5.6333
3.6715 | —2.3096 | 0.62419 23.5002
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Where LW (2,1)T represents the transpose of LW (2,1). All names in the
above table were described in architecture of the proposed network; see figure

(4).

REFERENCES

1. T. Tamura, and et. al, Numerical prediction of unsteady pressures on square cylinder with
various corner shapes, J. Wind Eng.Indus.Aerodyn., vol. 74-76 (1998), 531-542.

2. T. Tamura and T. Miyagi, The effect of turbulence on aerodynamic forces on square cylinder
with various corner shapes, J.Wind Eng.Indus.Aerodyn., vol. 83 (1999), No.1, 135-145.

3. W. Zheng and C. Dalton , Numerical prediction of force on rectangular cylinders in oscil-
lating viscous flow, J. Fluids Struct., Vol. 13 (1999), 225-249.

4. C. Dalton and W. Zheng , Numerical solutions of viscous uniform approach flow past
square and diamond cylinders, J. Fluids Struct., Vol. 18 (2003), No.3-4, 455-465.

5. NK. Delany And NE. Sorensen , Low speed drag of cylinder of various shapes, NACA
Technical notes, (1953), 30-38.

6. E. Naudascher, and et. al, Fzploratory study on damping of galloping vibrations, J.Wind
Eng. Indus.Aerodyn., Vol. 18 (1981), 211-222.

7. KCS. Kwok, and et. al, Effect of edge configuration on wind induced response of tall building,
Eng. Struct., Vol. 10 (1988), 135-140.

8. S. Okamoto and N. Uemura, Effect of rounding side corners on aerodynamic forces and
turbulent wake of a cube placed on ground plane, Exp. Fluid, Vol. 11 (1991), No.1, 58-64.

9. J.C. Hu, and et. al.; Effects of corner radius on the near wake of a square prism, Exp.
Fluid, Vol. 40 (2006), No.1, 106-118.

10. K. Sreenivasa Rao, and B. Yegnanarayana, Modeling durations of syllables using neural
networks, Computer Speech and Language, Vol. 21 (2007), No.2, 282-295.

11. H. Altun, A. Bilgil , and B.C. Fidan, Treatment of multi-dimensional data to enhance
neural network estimators in regression problems, Expert Systems with Applications, Vol.
32 (2007), No.2, 599-605.

12. Alvaro Silva, Paulo Cortez, Manuel Filipe Santos, Lopes Gomes, and José Neves, Mortal-
ity assessment in intenstve care units via adverse events using artificial neural networks,
Artificial Intelligence in Medicine, Vol. 36 (2006), No.3, 223-234.

13. G. Manduchi, S. Marinetti, and E. Grinzato, Application of neural networks computing
to thermal non-destructive evaluation, J. Neural computing & application, Vol. 6 (1997),
No.3, 148-157.

14. M.Y.El-Bakry , A Universal Neural Network Representation for Hadron-Hadron Interac-
tions at High Energy, Int. J. Modern Phys.C, Vol. 11 (2000}, No.3, 619-628.

15. M.Y.El-Bakry, and K.A. El-Metwally, Neural Network for Proton- Proton Collision at
High Energy, Chaos, Solitons and Fractals, Vol. 16 (2003), No.2, 279-285.

16. M.Y.El-Bakry, Feed Forward Neural Networks Modeling for K-P Interactions, Chaos, Soli-
tons and Fractals, Vol. 16 (2003), No.2, 279-285.

17. A. K. Hamid, Scattering from spherical shell with a circular aperture using neural networks
approach, Can. J. Phys., Vol. 76 (1998), 63-67.

18. G. Scalabrin, C. Corbetti, and G. Cristofoli, A Viscosity Equation of state for R123 in
the form of a Multilayer feed forward Neural Network, Inter.J. of Thermophyscis, Vol. 22
(2001), No.5, 1383-1395.

19. Hu Yi-Chung , and Tsai Jung-Fa, Backpropagation multi-layer perceptron for incomplete
pairwise comparison matrices in analytic hierarchy process, Applied Mathematics and Com-
putation, Vol. 180 (2006), No.1, 53-62.



Automatic Neural Network System 923

20. B. Curry , and P.H. Morgan, Model selection in Neural Networks: Some difficulties,
European Journal of Operational Research, Vol. 170 (2008), No.2, 567-577.

21. J. Steil Jochen, Online stability of Backpropagation—decorrelation recurrent learning, Neu-
rocomputing, Vol. 69 (2006}, No.7-9, 642-650.

22, Aristoklis D. Anastasiadis, George D. Magoulas and Michael N. Vrahatis, New globally
conwergent training scheme based on the resilient propagation algorithm , Neurocomputing,
Vol. 64 (2005), 253-270.

23. Christian Igel, and Michael Hiisken, Empirical evaluation of the improved Rprop learning
algorithms, Neurocomputing, Vol. 50 (2003), 105-123 .

24. Aristoklis D. Anastasiadis, George D. Magoulas, and Michael N. Vrahatis, New globally
convergent training scheme based on the resilient propagation algorithm, Neurocomputing,
Vol. 64 (2005), 253-270.

25. P. Frasconi , M. Gori , and G. Soda , Links between LVQ and Backpropagation, Pattern
Recognition Letter, Vol. 18 (1997), No.4, 303-310.

26. M. Riedmiller, and H. Braun, A direct adaptive method for faster Backpropagation learn-
ing: The RPROP algorithm, in H. Ruspini, ed., Proc. IEEE Internat. Conf. On Neural
Networks (ICNN), San Francisco, (1993), 586-591.

27. A.A El-Harby, Automatic extraction of vector representations of line features from re-
motely sensed images, Ph.D. Thesis, Keele University (UK), 2001.

G.M. Behery is an assistant professor in the Department of Mathematics and Computer
Science, Damietta, Faculty of Science, Mansoura University. He received his B.Sc. degree
in Computer Science from the Faculty of science, Suez Canal University, his M.Sc. degree
in computer science from Damietta, faculty of science at Mansoura University, and Ph.D.
in computer science from Germany/Egypt (Erlangen University /Mansoura University). His
research interests include neural networks, image processing, data structure, and OS.

Department of Computer Science, Faculty of Science for Girls, P.O. Box 838, Postal code
31113 Dammam, Saudi Arabia.
email: behery2911961¢yahoo.com

A.A. El-Harby is an assistant professor in the Department of Mathematics and Computer
Science, Damietta, Faculty of Science, Mansoura University. He received his B.Sc. degree in
Computer Science from the Faculty of science, Suez Canal University, his M.Sc. degree in
computer science from Damietta, faculty of science at Mansoura University, and Ph.D. in
computer science from Keele University, UK. His research interests include image processing,
neural networks, remote sensing, and NLP.

Department of Computer Science, Faculty of Science for Girls, P.O. Box 838, Postal code
31113 Dammam, Saudi Arabia.
email: elharby@yahoo.co.uk

Mostafa.Y.Elbakry is an assistant professor in the Department of Physcis, Faculty of
Science, Banha University. He obtained his B.Sc. degree in Theoretical physcis (Fluid Me-
chanics)from the Faculty of science, Banha University and Ph.D. in Theoretical physcis
(Fluid Mechanics)from the Faculty of science, Banha University His research interests Flow
problem of fluids around moving bodies( spheres,ellipsoids,...) and determination of material
parameters of fluids.

Department of Physcis, Faculty of Education for Girls, P.O. Box 796 - Tabuk, Saudi Arabia.
email: elbakrel987@hotmail.com



