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SOME BOUNDED OPERATORS IN SPACES OF TYPE W?

JAEKEUN PARK AND SEONG HoON CHO

ABSTRACT. For some generalized N -function ® , some Hélder type inequalities
and bounded operators on spaces of type Wl\f}[’q’ generalizing the WP-spaces due
to Pathak and Upadhyay are obtained.
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For a nondecreasing right-continuous function a with a(0) = 0, a(t) > 0
]

if t > 0 and a(c0) = 0o, define M(z) = f a(t)dt, which is called an N-

0
function. We know that M is continuous, convex and Ililm0 M(z)/z = 0. We
b el

|y
define v(s) = sup ¢, s > 0 and Q(y) = / v(s)ds. Then Q is an N- function
a(t)<s 0

and Q(y) = sup {w|y| -M (9:)} We call (M, Q) is a complementary pair of
T

N-functions. In the sequel, let M, €} and ® be N- functions.
Now the class Ky, is defined as the set of all differentiable functions ¢(z)
satisfying

ol =ing {320 | [~ & (3o o)) as <1} < oo

for each nonnegative integer ¢ where the positive constant o depends upon the
function . In general K3, is not a vector space.
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The spaces Wf/} is defined to be the linear convex hull of the class Kjfj,. ij[
is a Banach space under the norm || - ”?\)l,q and can be regarded as the union of
countably normed spaces W , of all infinitly differentiable functions ¢, which
for any 6 > 0 satisfy ’

. ®© (1 _
el g0 = inf {,\ |/ ) (ﬂeM[(a é)zlw(Q)(x)D dz < 1} _

forq=0,1,2,....
The class K42 is defined to be the set of all entire functions (z), z = z +dy
satisfying, for k =0,1,2, ...,

[e.]
o =suping {3 [~ o (e rota) o <1} <o
Y —-00

The spaces W?® is defined to be the linear convex hull of the class K®
with the norm || - |*®. The space W% is the set of all functions ¢ in W®
with the norm (k =0,1,2,..)

o0
ol = suping {3 [ & (3|e-10oMo(a)| ) ao <1}
Yy —00 A

We denote by K?,I’q’ the set of all entire analytic functions ¢(2),z = = + iy
with the norm

© /1
lellfy® = supinf {/\ | / & (ﬂe[M(“”‘“(by”w(z)D dz < 1} < o0
-0

The space Wir? is the convex hull of the class K3® with the norm || - |
and can also be represented as a union of countably normed linear spaces. We
denote by W]‘(z,’l;’<I> the set of all functions belonging to the spaces Wﬁ’q’ with the
norm

) i 1 a—8)z]—
E)

-0

In the sequel we denote by A - B the collection of all products f; - fo for any
functions f; € A and f; € B, and for the simplicity of notation, let [b, &, f] =|
e~ UGk £(2) |

If &(z) = zP,1 < p < 00, we have

Wi = Wh, Wi o = W5 ,, WP = WP and Wh?® = wbr[3),
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Theorem 1. (a) For any p(z) € W, the differentiation $(x) and the multi-
plication zp(z) by x of p(x) belongs to the space Wg.

(b) For any ¢(z) € W2, the differentiation $(z) and the multiplication
2p(2) by z of p(z) belongs to the space W2,

(€) For any ¢(2) € Wg}r’@, the differentiation H(z) and the multiplication
2p(2) by z of ¢(2) belongs to the space Wﬁ’q’.

Proof. (a)For any p(x) € Wi, | ¢\9(z) | eM(92) < C, implies that | ot (z) |
eM(a.a:) < Cq+1 and

| oo (@)@ | < (2] Cy+aComr )™
< chae—M[(a—é)w] + qu_le—M(ax) < C;e—M[(“—fs)z],
where C}, = CyCs + qCy-1. Hence ¢(z) € W and zp(z) € Wi

(b) For any @(z) € W22, | 2Fp(z) | e < Cy. Since | Flo(2) |
e~ b+l < Cg-1 and

C 1 1
| [0l 1< L0pem 0 < Lo fllermisn < gy Rl

we have

| 2%@(2) | <| [2F0(2)] | +k | 27 0(2) |
< Cppe®lOW | g0y T < ¢ QB

which means that $(z) € W2, Also | 2¥T1¢(z) | =¥ < Cyya, which implies
2p(z) € We,

(c) For any o(z) € Wir®, since | $(z) | e~ Ml(e=nal=ably+n)] < € and

| zp(2) | eMla=n)21=0lb+m)v) < O, we have

| ¢(z) | eM (a-n)al-Q+] < ¢, and | zp(z) | €Me~el=b+av] < o5

which implies (2) € Wiys® and zp(z) € Wyyh®. O

By the convexity of ®;(i = 1,2,3), we have the following lemma;
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Lemma 2. [2] If N-functions ®;(i = 1,2, 3) satisfy the inequality

lim sup &7 (z)®; ' (z)/®3 () < oo

T—00

for any ¢ > 0, then for fi € W% gnd f, € Wb®2  we have fifs €
Wtbotb:®s that is,

Whbo, @1 | p7Lb. P2 ~ W ibotb,®s

and
||f1f2“9,ko+k,bo+b,d>3 < QHfluﬂ,ko,bo,@l||f2“0,k,b,<1>z

Lemma 3. If N-functions ®,(i = 1,2,3) satisfy the inequality, for any z > 0
and some positive constant «, ®71(z)®;*(z) < a®3'(z), then for nonnegative
z and y, we have @3(2—3!) < ®1(z) + a(y), where B (z) = inf{®:i(t) > 7}
Proof. By the definition of the inverse, we have ®;(®;(z)) < z < & (®;(z)).
Let z,y € RT be arbitrarily fixed. Then ®,(x) < ®,(y) or its order would be
reversed. In the first case, we have

zy < O7H(21(2)) 27 (D2(y)) < 7 H(B2(y))®5 ' (@2(y)) < @3 (D2(y))

Hence @3 (%) < ®y(y). If the second case is true, we get @3 (-i—y) < ®4(z), s0

@3(2) < maz{®1(2), 22(0)) < @1(2) + Ba(v),

which completes the proof. O

Theorem 4. If N-functions ®;(i = 1,2,3) satisfy the inequality, for any x > 0
and some positive constant o, 7 (z)®; 7 (z) < a®3 (), then for fi € Wb
and fo € W22 ye have f fo € Whbotb®s that s,

Whbo, @1 | (b2 - Whbotb,®a

and
e N e e
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Proof. Without loss of generality, we may assume that

B e P

By the Lemma 3, we have the following inequalities; for any ¢,

o 1
/ QS( (1+6)2[bﬂ+b ko + k, flf?]) dz

7 %‘I’< i)g{bo,ko,fl]-[b,k, f2])d3;

IA

<3 [ o (pboken)at] [~ e () as
e e e

where (f1f2)(2) = f1(2) f2(2); which implies that
||flf2HQ,ko+k,bo+b,<I>3 < 20[(1 + E)anl”Q,kg,bo,<1>1“f2”9,k,b,d>2’
which completes the proof. O

Lemma 5. For some constant o; and the coresponding complementary pairs
(M;, ®;), the followings are equivalent;

(a) 87! (2)®3 ' (z) < a3 (2);

(b) ®3(arzy) < B1(x) + Po(y) for some a > 0, and z,y > xp > 0;

(¢) Mi(agyz) < @o(y) + Ms(2), y,2 > 22 > 0;

(d) Ma(aszz) < @1(x) + Ms(2), z,2 > 23 > 0.

Proof. By the Theorem 4 and Lemma 5, this is proved. O

By the Lemma 3 and properties of the coresponding complementary pairs of
N-functions, we have the following corollary;

Corollary 6. For some constant ¢; and the coresponding complementary pairs
(M;, ®;)(i = 1,2,3) of N-functions in Lemma 5, if the inequality ®7" (2)®; ' (z) <
a®3 ' (x) holds, then we have the followings;

(a) for fi € Whbo:®s gng fo € Wbz f fo € Whbotb:®s ypat gs,

Wﬂ,bo,q?; . Wﬂ,b,q)z C Wﬂ,bo-{—b,@a

and
2
||f1f2”91k0+k,bo+b,‘1>3 < “h”ﬂ,ko,bo,%Hfznﬂ,k,b,%_
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(b) for fi € Whto®2 qnd f, ¢ WHOMs 7 f, € Wihbotb My - that s,

Whbo,®2 | b Ms ~ W hbotb, My

and

e R

2
C2
(c) for fi € Wbt gnd fo € WhbMs £ £ ¢ Wihboth My that 4s

WQJ)O,CIH _WQ,b,Ma C W bo+b, M

and )
T A TS

Theorem 7. Let ®;,i = 1,2,3 be N-functions such that ®7(z)®;(z) <
a®3(z) and f(2) be an entire analytic function satisfying

I +]2 )7 f(z) |t 1= Da, < co.

Then we have pf € Wbkbotb:®s for o] o € WkO 22,

Proof. By Theorem 4, we have, for any e,

|o%

2, kot+k,bo+b, @3

kaOybﬂyq>1 Qak»ba‘§2

1
m(l +]z ")p(2)
(e )7 ) -

Q,k,b,® Q,k+h,b,®
< 2aDq, ([ ¢ | 2 [ TR < o,

<2l (1+1a ()

Q,ko,b0,21 Q,k,b,D>

< 2«

(¢(2) +] 2 ["e(2))

which impliies that of € Wkotkbotb.2s for all o € WhEbP2, 0

If &(z) = 2P, 1 < p < 00, we have Wiy® = Wi?, Wixh® = Wipb?[2,3].
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Theorem 8. If ®;(i = 1,2, 3) are N-functions such that the inequality

o7(z)05 (z) < a®3(x) for any x > 0 and f(z) is an entire function
satisfying

Y -0

Then of € ﬁzﬂg’g% forall p € Wﬂb%.

Proof. By the simillar argument as the proof of Theorem 4, We have

Q,b+b6,%
1 b4+bo,®3

airor?

M,a—ao

= supyinf )\|/ @3

)2 | elM((a=a0-0)z)=(b+bo+0)y)]
A1+

x f(2) 2 o(e) [z < 1)

. o0 1
< Sl;pmf{A | / ‘I’s(m

x f(Z) ¢(2) |)dz < 1}

< Sup inf {)\‘/ ( 11+ 5 | e~[M(aox)+n(boy)]f(z) ‘) dr < 1}

+ supinf {)\‘ / &, (1 e | e[M((a—é)z)—ﬂ((b+p)y)](P(z) |> dr < 1}
Y —00

< (Dast 9 [54%) < oo

| elM((a—8)z)— M (aoz)—Q((b+p)y)~Q(boy)]

O

Lemma 9. For some constant o > 0, if N-functions ®;(i = 1,2, 3) satisfy the
inequality

o7 (2)9; ' (z) < az®3 (z) - - (*)

for any x > 0, then for nonnegative x and y, we have
Ty -1 ~1
— < 21(2)®57(22(y)) + 22(y) 257 (21(2)),

where ®71(2) = {t | ®;(t) > x} for alln.
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Proof. By the similar way as in the proof of Lemma 3, this is proved; for given
x> 0 and y > 0, either ®; < @5 or its reversed order hold Suppose &, < Bs.
Since z/®; ' (z) is increasing and ®;(®;*(z)) < = < &7 }(®;(z)) fori = 1,2,3,
we have

vy _ Y@ (81(2)) 05 (21 (2)) yq’l(w)‘bs (21(2))
)

a ~ a®; 1 (® (x) a®; ' (®:1(z))
y®a(y)®3 " (9:1(x)) -1
< = (';‘DQ(y)) < Po(y) 25 (Pa(2))

If ®1(z) > ®2(y), then
o S U@ (®0)).

In both cases, for nonnegative z and y,
7 < max {B:0)05" (:(2)), ()25 (22(0))
< 81(2)®5 1 (82(y) + D2(y) @57 (21(2))

a

Theorem 10. For some constant o > 0, if N-functions ®;(i = 1,2, 3) satisfy
the inequality (x) in Lemma 7, then for fi € W21 gnd f, € Whb®2 e
have fifo € Whbotb:®s that 4s

Wﬂvbm@l . Wnybrq)Z C WQ;bO"'byq)l'}
and
T AL

Proof. Without loss of generality, we may assume that

| fy [Phodo® y [Pbbea— 1,

Then by the convexity of ®3 and the condition (1), we have the following in-
equalities;

°° 1
/(,o‘I> (W[bo"}'b’ko’*‘kaflfz]) da

<-;-/ <b3<1 @1 ([bo, ko, f1])® 1(‘I’z(

1
=T —I
511 + 5 g(say)

bk fa]))) dz

+
(‘PQ( [b,k, f2])@5 1(‘I>1( [bo, ko, f1]))> dz
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By symmetry it suffices to consider one of them, say I;.

| a(@a( oo b S5 @l b )
I <K==
/ ‘1’1(1+ [bo, ko, f1])dz
/ 1 (b, o, 1)) / Ba( ks o))

/~ ‘Pl(m[bo,ko,fﬂ)dw
< [ ek s

S/ Oy ([b, k, fo])dz < || fo| P2 %2 < 1.

—o0

Similarly I < 1, so this implies, for any ¢,

o0 1 Q,ko,b,®
J— < 1K0,0,92 .
/_oo o (Za(l +6)2[b0 ok +k’f1f2]> @l =t

This shows that fifs € Whbotb,®s fQbo,®1 . b2 — Pbo+b,®s gnd

[fy folBRotRbor0®a < 20 (14 €)?) | Probootr | £y B,

which completes the proof.

909

Theorem 11. If ®;(i = 1,2) are monotone nondecreasing N-functions such

that

/ 1(<I>1“1(t)<192‘1(t) /£2)dt < oo
0

and, for some constant o,

0@ = 1 [ @0 0/,

then, for fi € Whbo®s gnd fo € W22 e have fifo € Whbotbi®s gpat 45,

Wﬂ,bo,él . Wﬂ,b,q’z C Wﬂ,bo+byq’3
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and

“flfQIIQ,ko+k,bo+b,<I>3 < 2a||fl”Q,ko,bo,<1>1“f-QHQ,k,b,tbg

Proof. Since ®7!(t)/t and ®,'(t)/t are nonincreasing it follows that ®3(t) is
concave and ®;'(0) = 0. Therefore @3 is a N-function and

50

3.

4.

o) - | T (@785 (1)) de > =(@7(0)/6)(@5 (1)),

that ®71(z)®; ! (z) < 2®31(z). By the Theorem 8, this is proved. O
REFERENCES
. I.M. Gelfand and G.E. Shilov, Generalized functions,vol. 3 Academic Press, New York,

1967.

. 8. K. Kim and D. Kim, Fourier transformations of W*®-spaces, Bull. Korean Math. Soc.

vol.34 No.2 (1997) 483-489.

R.S. Pathak and $.K. Upadhyay, W®-spaces and Fourier transform, Proc. Amer. Math.
Soc, vol. 121(1994) 733-738.

M. M. Rao and Z.D. Ren, Theory of Orlicz spaces, Marcel Dekker, New York, 1991.

Jaekeun Park received his BS and MS degrees from Seoul National University and his Ph.
D degree in Chungang University. Since 1977 he is a professor in the Faculty of Department
of Mathematics in Korea Air Force Academy and Hanseo University, Korea. His research
interests focus on the function spaces of ultradistribution and Fuzzy sets.

Department of Mathmatics, Hanseo University, Seosan, Chungnam 356-820, Korea
e-mail: jkpark@ hanseo.ac.kr

Seunghoon Cho received his BS degree from Mokwon University and his MS and Ph. D
degrees in Myongji University. Since 1995 he is a professor in the Faculty of Department of
Mathematics in Hanseo University, Korea. His current research interests are the function
spaces of ultradistribution and Fuzzy sets.

Department of Mathmatics, Hanseo University, Seosan, Chungnam 356-820, Korea
e-mail: shcho@ hanseo.ac.kr



