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FUZZY ERROR MATRIX IN CLSSIFICATION PROBLEMS

S. R. KANNAN* AND S. RAMATHILAGAM

AssTrRACT. This paper concerns a new method called Fuzzy Supervised
Method for error matrix, the method has developed based on Adoptive
Neuro- Fuzzy Inference Systems(ANFIS). For the performance point of
view initially the new method tested with trial data and then this paper
applies the proposed method with real world problems. So that this paper
generated 1000 random error matrices in programming language [R] and
then it tests the new proposed method for the error matrices. The results
of Fuzzy Supervised Method given in terms of Kappa Index and Congal-
ton Accuracy Indexes, and performance of Fuzzy Supervised Method has
evaluated by using Pearson’s test.
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1. Introduction

Fuzzy set theory has been applied to an increasing number of real world prob-
lems of considerable complex type. It gives solution to a variety of problem such
as, prediction and modeling where the physical processes are not understood
or highly complex. In this study, this paper presents a method Fuzzy Super-
vised Method for error matrix to improve the accuracy of resultant data. Error
matrix is a very effective way to represent accuracy in classification analysis,
because the accuracy of each category are plainly described along with both the
errors of inclusion and errors of exclusion present in the classification problem.
Using an error matrix to represent accuracy has been recommended by many
researchers [2, 11, 12], as it provides a detailed assessment of the agreement be-
tween the sample reference data and classification data at specific locations, to-
gether with a complete description of the misclassification’s registered for each
category. Here each agreement, that is the resultant classes are expressed in
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TaBLE 1. Error matrix by hard classification
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terms of producer and user accuracy. Producer accuracy is indicating the prob-
ability of reference classes and it obtain the producer accuracy, with related to
errors of omission. User accuracy is indicating the probability of classification
classes and it obtain the user accuracy, with related to errors of commission [2].
Thus, the producer and user accuracy of each classes are completely dependent
on errors of inclusion and errors of exclusion.

So the main problem in classification method the error matrix has been in-
troduced with uncertainty by soft or hard classifiers. In hard classification each
element of sample data is associated with only one class in the classification and
only one class in the reference data. Consequently, a class assignment is judged
exactly right, or exactly wrong. In soft classification, gradual membership in
several classes is allowed for each element of sample data and assignments to
classes are judged correct, or incorrect in varying membership degrees. But to
apply conventional measures of classification accuracy, these soft classification
outputs must be hardened and the comparison limited to crisp reference data,
causing a general loss of information. In this way the uncertainty arises in ref-
erence and classification data [2] by both the classifiers. By poor classification
scheme can result in significant bias being introduced into error matrix which
many over or underestimation the true accuracy [12]. Two types of sources of
biases in accuracy assessment, they are conservative and optimistic biases in the
accuracy assessment, many of the sources of these types, which are not possible
to avoid. Hence, it is impossible to get the reference or classified data with-
out error by either classifiers. Also it is clear that the soft and hard classifiers
with error matrix is obviously having uncertainty and the error matrix provides
accuracy with uncertainty.

So the error matrix needs a filter after produce the entries of it or agreements
of error matrix in hard or soft classifiers. To solve the problem of uncertainty
in error matrix, this paper introduces Fuzzy Supervised Method with the use
of ANFIS, with the aim of reducing uncertainty in the error matrix by soft or
hard classifiers and to improve the resultant data. Every agreements of error
matrix are expressed in terms of fuzzy membership grades [0,1] and then the
new fuzzy agreement will be introduced. The main purpose of this study is for
the following reasons:
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FIGURE 1. New Fuzzy Membership Function

1. to improve the accuracy resultant data;
2. to reduce the uncertainty in error matrix.

The ANFIS is on the Sugeno’s [9] fuzzy model, and then it has modified and
applied successfully for many real world problems by Roger [6, 7, 8]. He has
introduced and used ANFIS for quick and straightforward of input selection
for neuro fuzzy modeling [6]. ANFIS employing fuzzy if-then rules can model
the qualitative aspects of human knowledge and reasoning processes without
employing precise quantitative analysis [7], the model or data is expressed in
terms of membership grades and then the rules are used to evaluate a crisp out
put. Fuzzy if-then rules is a expressions of the form IF M THEN N, where
M and N are labels of fuzzy sets [7] characterized by appropriate functions.
Due to their concise form, fuzzy if-then rules are often employed to capture the
imprecise modes of reasoning that plays an essential role in the human ability
to make decisions in an environment of uncertainty and imprecision. This paper
has defined a new fuzzy membership function and an effective rules to get new
fuzzy agreement for Fuzzy Supervised Method.

The remainder of the paper is divided into two sections. Section 2. describes
the error matrix by hard or soft classifiers, defines membership function for
Fuzzy Supervised Method, evaluates the new fuzzy agreement, and comparing
the results between Fuzzy Supervised Method for error matrix and error matrix.
Conclusion of this paper is given in Section 3.

2. Fuzzy supervised method for error matrix

Fuzzy set based Measure is an excellent computational design that gives a
mathematical tool for dealing with the uncertainty. There are several develop-
ments on Fuzzy set, based on Neural Networks [11], self - organizing map [4]
and etc. This section focuses on four-parts in order to reduce the uncertainty of
error matrix in hard or soft classifiers.

1. Forming Error Matrix with Hard or Soft classifiers,
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FIGURE 2. Fuzzy set for membership function

2. Designing membership function for each agreement of error matrix along
with error inclusions and error exclusions,

3. Forming rules for Fuzzy Supervised Method for evaluating new fuzzy
agreements and

4. Comparing the Accuracies of Error Matrix and Fuzzy Supervised Method
in Error Matrix.

2.1. Forming error matrix with hard or soft classifiers

Let R, be the set of reference data assigned to class n, and Cp, the set of
classification data assigned to class m, with 1 <n <gand 1 <m < ¢ and q as
the number of classes. The data R,, and C,, are considered as crisp sets in error
matrix. The characteristic function for crisp sets are defined as follows:

/J’Rn(z) X — {07 1}? (1)
where X is an universal set and for all x in X.
/j’cm(x) (X - {0> 1}7 (2)
where X is an universal set and for all x in X.
1 iffxe R,
HR. = { 0 otherwise } (3)
1 ifftxeCy
HCom = { 0 otherwise } (4)
M(m,n) =Y pr.nC. (%) (5)
zeX
|1 fze R Az cCy
PR.0C, () = { 0 otherwise } (6)
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FIGURE 3. Fuzzy Supervised model for getting new fuzzy agreements

Equations 3 and 4 have been used to assign the values of every element of
R, and the values of every element of Cp,, and the equations 5 an 6 have been
used to calculate the elements of error matrix in row m and column n. The
error matrix is shown in table 1], e;+ and e; are the total assignment to the
ith class for classification and reference data, respectively. The disadvantage of
hard classification are:

1. A class assignment is judged exactly right or exactly wrong, that means
the element has only two possibility with 0 (wrong) or 1 (right), the
partial truth has not discussed.

2. Assigning the element of error matrix is not a straight forward way.
The error matrix in soft classification also follows the same procedure of
hard classification, the element of error matrix is not selected by straight
forward way.

2.2. Defining new membership function for fuzzy supervised method

The each fuzzy set is divided into two categories before we start to define
a new fuzzy membership for Fuzzy Supervised Method, that is the elements of
each sets divided into two parts which are the elements lower and equal to mean,
and elements which are equal to mean or above mean. The membership function
assigns the highest membership value to the mean value of each fuzzy set, the
membership grades for remaining each element of fuzzy set gets according to
the strength of it by comparing with mean elements of the fuzzy set. So this
paper defines the following fuzzy membership equations to assign the member-
ship grades according to the instructions, which are stated above, also this paper
develops programs in [R] programming language to implement the defined fuzzy
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membership equations and assign membership grades in perfect way. The new
membership equations for Fuzzy Supervised Method are defined as:

pr(@) = 1/(L+ [((z; = m)/(m —n))*)°) (7)
ur() = 1/(1+[((z; —m)/(0 - m)*]") (8)

layer1  layer2 layer 3 layer 4

layer 5 —<>©————*> X

FiGURE 4. Fuzzy Supervised Network for Error Matrix
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Ficure 5. Congalton and Kappa accuracies of Fuzzy Super-
vised Method for 1000 error matrices

z is a fuzzy set, x; denotes the set of elements which are below and equal to
mean of x, z; denotes the set of elements of set x which are above and equal to
mean of x, m is mean of x, o is a maximum of x and n is a minimum of x.
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In the proposed membership function for Fuzzy Supervised Method, the shape
or model of membership functions depends on the parameters (please refer the
figure 1) of fuzzy set, and changing the parameters will change the shape of

membership function,

Kappa

FicURE 6. Congalton and Kappa accuracies of Fuzzy Super-
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FIGURE 7. Congalton and Kappa accuracies of 10 Error Matrices
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Usually before to use the fuzzy set to analyze the data, the suitable model of
fuzzy membership function or shape of fuzzy membership function is predicted
according to the structure of data by researchers. But in our new fuzzy mem-
bership function the shape of membership function is decided by the equations
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7 and 8 which we have defined above. So we no need to analyze the suitable
model of membership function for input parameters, and we assure that the new
membership equations 7 and 8 can be used any type of problems or data by

using fuzzy set.

Kappa

Frcure 8. Congalton and Kappa accuracies of Fuzzy Super-
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FIGURE 9. Congalton and Kappa accuracies of 40 Error Matrices

2.3. Computing fuzzy agreement from error matrix

The method Fuzzy Supervised Method has been developed with the use of
Adaptive Neuro-Fuzzy Inference System [6, 7, 8]. The purpose of this method to
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F1GURE 10. Congalton and Kappa accuracies of Fuzzy Super-
vised Method for 60 Error Matrices

reduce the uncertainty in error matrix and to improve the accuracy of resultant
data.

Two membership functions are defined for each agreement (refer the figure
2(a) and (b)) to reduce the uncertainty of error matrix. Each fuzzy set of
membership function consists the parameters or classes of both error inclusion
and error exclusion of error matrix.

Let = be the agreements between matches and mismatches, that is z is the
element of the classes of reference and classified data. Here the agreement x
has been represented by two membership functions, please refer the figures 2(b).
Consider R,, is the reference data(Matches) and Cp, is the classified data (Mis-
matches), where n varies from 1 to n and m varies from 1 to m. The agreement
X in the classes of n and m as indicated in the matches and mismatches. The
fuzzy membership functions for the R, and C,, are:

10+ (e —m)/(m — n))?%) if x < mean(x)
e “{ 1/(1+[((z5 - m)/(0~n)") if x > mean(x) } ©)

1A+ (i —m)/(m— n))?%) if x < mean(x)
HOm = { l/(l + [((1'] - m)/(O - ’ﬂ))zlb) ifx 2 mean(x) } (10)

The membership grades of each agreement between matches and mismatches
are computed with the use of equations 9 and 10.

z € {R,,Cn}.

The following rules are introduced for = to express both the character of R and
C:

if z € Ry, then 2 = px

if £ € C,, then z = gz,
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where p and q are the fuzzy parameters. Figures. 3 and 4 illustrate graphically
the fuzzy reasoning mechanism to drive the fuzzy agreement from given agree-
ment x with two membership grades. The computation method of each of layers
given below:

Layer 1 :
Every node i in this layer is a square node, and each node generates a membership
grades of a linguistic label, with the node function

re R (11)
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FIGURE 11. Congalton and Kappa accuracies of 60 Error Matrices

Layer 2:
Every node in this layer is a circle node labeled [w], and the node in this layer
calculates the ring strength of a rule via multiplication(For information, here
the i = 1 is only for first input selection, and i = 2 is for second input and etc.):

nf = pg, () * po,(z) (12)
where * denotes product.
Layer 3:
Every node in this layer is a square node with the node function
nd =wzyj, j = 1,2, (13)
wzi1 = w(PaT + 1i1), (14)
Wzig = ’w(pizﬂi + 7‘12). (15)
Layer 4:
The single node in this layer is a square with the node function:
ng = Z wzij = w(Pi;x + 7i5) (16)

summation of rules given in layer 3.
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TABLE 2. Sample Misclassification Matrix

| Error Matrix |

A|{B|C|D|E
A8014 |0|15]7
Bj2 |17|0 |9 |2
Cil1215 |94 |8
D{7 |8 {0650
E 3 |2 1|6 |38

Layer 5:
The single node in this layer is a circle node labled [Y "] that computes the overall
output as the summation of all incoming signals,

z=y we;/(2w)’. (17

Layer 5 is using to compute the fuzzy agreement for error matrix. After
obtained the fuzzy agreements of error matrix via Fuzzy Supervised Method.
To show the performance of the Fuzzy Supervised Method this paper gives the
following example. Error matrix from USGS - NPS Vegetation Mapping Pro-
gram [13] has shown in the table 2, and the Fuzzy Supervised Method for the
same error matrix has shown in the table 3. The columns of the matrices define
the classes in the reference data, and the rows define the classes in the data
being evaluated for accuracy. The classes on the diagonal of the error matrix
depict the number of the sample units correctly classified in agreement with the
reference data category. The accuracies of Fuzzy Supervised Method for error
matrix and the accuracy of error matrix given in the table 3. To verify the
efficient of the method, this paper has tested it with 1000 error matrices. So
this paper developed a program in software [R], to build up 1000 random error
matrices. Also there is an another program developed in programming language
[R] to apply the Fuzzy Supervised Method to 1000 error matrices, which are
generated randomly by program in programming language [R]. The accuracies
of Congalton and Kappa Index generated by Fuzzy Supervised Method for Er-
ror Matrices compared with accuracies for the same matrices by Error matrix,
shown in the figure.5, and it is very clear that from the figure whenever the
accuracy of Congalton increases, the kappa also increases.

I

n]

2.4. Comparison of accuracies of error matrix and fuzzy supervised
method in error matrix

The accuracies of the both the methods are compared with the use of Pear-
son’s test [5]. The correlation coefficient and critical value [5] have been com-
puted in the following way for 10 & Fuzzy Supervised Method in 10 Error
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TABLE 3. Fuzzy Supervised Method for Sample Misclassifica-

tion Matrix

‘ Fuzzy Supervised Method for Error Matrix

A B C D E
A | 76.226415 | 2.468085 | 3.877358 | 10.22270 | 5.000000
B | 2.474359 | 14.548077 | 2.083333 | 8.50000 | 1.177180
C | 6.000000 | 2.500000 | 9.000000 | 1.5000 | 4.272727
D | 8.141021 | 6.742089 | 2.000000 | 62.94304 | 3.000000
E {4.133838 | 1.853535 | 4.318182| 3.00000 | 38.000000

TABLE 4. Accuracies of Fuzzy Supervised Method for Error
Matrix & Error Matrix

|

Accuracy Comparison

Fuzzy Supervised Method

Error Matrix

Congalton

70.8 %

68.8 %

Kappa

60.7 %

58.3 %

TABLE 5. Accuracies for 10 error matrices

Matrices. The correlation coefficient for the Congoltan Index and Kappa Index
for 10 error matrices: One of the indexes is labeled x and one y. The table 6 has
given the square and cross product of the each variable. Index of Covariation:

[ Congoltan and Kappa Indexes |

Congoltan | Kappa
0.1956818 | -0.013695489
0.2368019 | 0.031970310
0.1978120 | -0.007777403
0.1898993 | -0.014282091
0.2230795 | 0.003888935
0.1813564 | -0.031905400
0.1223392 | -0.113278834
0.1707520 | -0.060901326
0.2272145 | 0.030103108
0.1590911 | -0.059804434

(N*Zmy) - (Zw*Zy) — 0.1366401

Variation of x:

(N> a?) - (2};)2 = 0.3277168
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TABLE 6. Square and Cross product of each Congoltan and
Kappa Indexes
T y z? y*2 Ty
0.195681 | 0.0382913 | -0.01369548 | 1.875664e-04 | -0.002679957
0.236801 | 0.0560751 | 0.03197031 | 1.022101e-03 0.007570630
0.197812 | 0.0391295 | -0.00777740 | 6.048800e-05 | -0.001538463
0.189899 | 0.0360617 | -0.01428209 | 2.039781e-04 | -0.002712159
0.223079 | 0.0497644 | 0.00388893 | 1.512382e-05 | 0.000867541
0.181356 | 0.0328901 | -0.03190540 | 1.017955¢-03 | -0.005786248
0.122339 | 0.0149668 { -0.11327883 | 1.283209¢-02 | -0.013858441
0.170752 | 0.0291562 | -0.06090132 | 3.708972¢-03 | -0.010399023
0.227214 | 0.0516264 | 0.03010310 | 9.061971e-04 0 | .006839862
Variation of y:
2
(N *Zgﬁ) - (Zy) — 0.423986 (20)

Correlation coe cient(r):

(Ve Xa) - (Tar o))/ (ve L) - () + (v L)

2
~(>2y) =003 (21)
Degrees of freedom:
df =N-2=8 (22)
r-critical for = .05
7 — critical(a = .05, df = 8) = .632. (23)

Here the value(or absolute value) of r is larger than the r-critical value, so
this paper has decided to reject the null hypothesis, and it concluded there
is a strong linear relationship between two accuracies. In the same way, the
correlation coefficient for the Fuzzy Supervised Method for the same 10 error
matrices has obtained. The correlation coefficient for the Congoltan Index and
Kappa Index for Fuzzy Measure for 10 Error Matrices have given in the table 7.

Fuzzy Supervised Method for Error Matrices

Correlation coefficient(r) = —0.2984111
r-critical( = .05; df = 8) = .632

(24)
(25)

Here the value(or absolute value) of r is smaller than the r-critical value. So
this paper has decided do not reject the null hypothesis, and there is no strong
linear relationship between two accuracies. Correlation coefficients and critical
values of 10, 20, 40, 60 matrices of two methods have given in the table 8 and
Kappa and Congoltan accuracies of 10, 40, 60 of Fuzzy Supervised Method for
Error Matrices & Error Matrices have given the figures 6, 7, 8, 9, 10 and 11. In
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TABLE 7. Accuracies for Fuzzy Supervised Method for error matrices

TABLE 8. Correlation coefficients for Fuzzy Supervised Method

S. R. Kannan and S. Ramathilagam

[ Congoltan and Kappa Indexes |

Congoltan | Kappa

X y

0.1641291 | -0.0498711602
0.1955637 | -0.0154156562
0.1788437 | -0.0313234003
0.1940971 | -0.0078827136
0.1947574 | -0.0103425398
0.1057447 | -0.1224260573
0.2038157 | 0.0002470564
0.2348116 | 0.0433234565
0.2090713 | 0.0041218117
0.1775195 | -0.0395759773

for Error Matrix and Error Matrix & Critical Values

] Comparison of Fuzzy Supervised Method & Error Matrix ]

No. of | Fuzzy Measure Error Critical
matrices | For Error Matrix | matix Value
10 -0.2984111 0.983395 | 0.632
20 -0.1136743 -1.000000 | 0.444
40 0.20459 -1.000000 | 0.324
60 -0.1290964 -1.000000 | 0.273

the case of Error matrix the accuracies of Kappa and Congoltan have a linear
relationship. Since results or accuracies of both methods have linear relationship
in error matrix, we can immediately give the accuracy of one method for error
matrix when we have the accuracy of error matrix with the use of other one
method. Hence there is no use to give the both methods to find the accuracy
of error matrix. In the case of Fuzzy Supervised Method, there is no linear
relationship between the accuracies of Kappa and Congoltan, also it is clear
from the graphs (Figures 5, 6, 8 and 10) whenever Kappa increases, congalton
also increases. And also the proposed method gives always better accuracy than

the accuracy of error matrix with soft or hard classifiers.

3. Conclusions
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This paper has given a new method called fuzzy supervised method to su-

pervise the error matrix by hard or soft classifiers. Mainly this paper developed
new membership functions and rules to evaluate fuzzy agreement for error ma-
trix with soft or hard classifiers in order to reduce the uncertainty of result in
error matrix and to improve the accuracy of resultant data. This paper has
constructed 1000 random error matrices in programing language [R] and shown
explicitly the performance of Fuzzy Supervised Method in Error Matrix, and
also this paper has compared the accuracies of both Error matrix and Fuzzy
Supervised Method with error matrix by using Pearson’s test. Of course we
always have better accuracy in Fuzzy Supervised Method than Error Matrix.
The results have given explicitly with the use of graphs.
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