Prediction of Elementary Students' Computer Literacy Using Neural Networks

신경망을 이용한 초등학생 컴퓨터 활용 능력 예측

  • Oh, Ji-Young (Dept. of Computer Education, Gyeongin National University of Education) ;
  • Lee, Soo-Jung (Dept. of Computer Education, Gyeongin National University of Education)
  • 오지영 (경인교육대학교 초등컴퓨터교육과) ;
  • 이수정 (경인교육대학교 초등컴퓨터교육과)
  • Published : 2008.09.30

Abstract

A neural network is a modeling technique useful for finding out hidden patterns from data through repetitive learning process and for predicting target values for new data. In this study, we built multilayer perceptron neural networks for prediction of the students' computer literacy based on their personal characteristics, home and social environment, and academic record of other subjects. Prediction performance of the network was compared with that of a widely used prediction method, the regression model. From our experiments, it was found that personal characteristic features best explained computer proficiency level of a student, whereas the features of home and social environment resulted in the worse prediction accuracy among all. Moreover, the developed neural network model produced far more accurate prediction than the regression model.

신경망은 데이터로부터 반복적인 학습 과정을 통해 숨어 있는 패턴을 찾아내고, 새로운 데이터의 목표값에 대한 정확한 예측에 유용한 모델링 기법이다. 본 논문은 개인적인 특성, 가정 사회적 환경, 타 교과 성적을 이용하여 학생의 컴퓨터 활용 능력 예측을 위한 다층 인식모형(MLP) 신경망을 구축하였다. 신경망의 인식률은 예측 방법으로 널리 활용되고 있는 로지스틱 회귀분석 모델과 비교하였다. 개발한 신경망에 대한 실험 결과, 개인적인 특성이 학생들의 컴퓨터 활용 능력을 가장 잘 설명하는 요소이며, 반면 가정 사회적 환경은 가장 낮은 예측 요소임을 발견하였다. 또한 본 연구의 신경망 모델은 회귀분석보다 더욱 높은 인식률을 나타냈다.

Keywords