DOI QR코드

DOI QR Code

A Probabilistic Load Balancing Scheme for Improving Service Quality of a Wireless Mesh Network

무선 메쉬 망의 서비스 품질 향상을 위한 확률적 부하 분담 기법

  • 박재성 (수원대학교 인터넷정보공학과) ;
  • 임유진 (수원대학교 정보미디어공학과) ;
  • 안상현 (서울시립대학교 컴퓨터과학부)
  • Published : 2008.10.31

Abstract

As the use of Internet and information communication technology is being generalized, the SSL protocol is essential in Internet because the important data should be transferred securely. While the SSL protocol is designed to defend from active attack such as message forgery and message alteration, the cipher suite setting can be easily modified. If the attacker draw on a malfunction of the client system and modify the cipher suite setting to the symmetric key algorithm which has short key length, he should eavesdrop and cryptanalysis the encrypt data. In this paper, we examine the domestic web site whether they generate the security session in the symmetric key algorithm which has short key length and propose the solution of the cipher suite setting problem.

무선 메쉬망 (Wireless Mesh Network: WMN)에서 트래픽은 IGW (Internet Gateway)를 통해 유선망과 교환되므로 트래픽은 IGW로 집중되어 병목지점이 된다. 따라서 다수의 채널과 다수의 인터페이스를 이용하여 증대된 WMN의 전체 용량을 다수의 IGW를 통해 균등하게 분산시키는 것은 WMN의 안정적인 운영을 위해 필요하다. 이에 따라 본 논문에서는 무선 메쉬 망의 부하를 다수의 IGW에 분산시켜 망의 안정성과 서비스 품질 향상을 위한 확률적 부하 분담 기법을 제안한다. 제안 기법은 혼잡한 IGW의 부하를 망 내 IGW들의 혼잡 정도에 따라 다수의 IGW에 분산시킨다. 또한 IGW와 거리가 가까울수록 집중되는 트래픽 양은 증가하므로 급격하게 과도한 트래픽이 새로운 IGW에 집중되는 것을 방지하기 위해, 제안기법은 혼잡한 IGW와 인터넷 접속을 위해 이를 사용하고 있는 MR (Mesh Router) 사이의 거리 정보에 따라 접속 IGW의 변경 여부를 결정한다. NS-2를 이용한 모의 실험을 통해 제안기법은 최소 혼잡 IGW를 이용한 기법에 비해 IGW의 혼잡 발생시 이를 해결하기 위한 망 안정화 시간과 망 내 패킷 손실율 측면에서 우수하다는 것을 검증하였다.

Keywords

References

  1. R, Bruno, et. al., “Mesh Networks: Commodity Multihop Ad Hoc Networks,” IEEE Communications Magazine, pp.123-131, Mar. 2005 https://doi.org/10.1109/MCOM.2005.1404606
  2. N. Nandiraju, et. al., “Wireless Mesh Networks: Current Challenges and Future Directions of Web-in-the-Sky,” IEEE Wireless Communications, pp.79-89, Aug. 2007 https://doi.org/10.1109/MWC.2007.4300987
  3. available at http://www.antd.nist.gov/wctg/manet/adhoclinks.html
  4. IEEE P802.11sTM/D1.07, “Draft Standard for Information Technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Mesh Networking,” Sep., 2007
  5. IEEE 802.16j/026r4, “Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems: Multihop Relay Specification,” June, 2007
  6. V. Jain, et. al., “A Cross Layer MAC with Explicit Synchronization through Intelligent Feedback for Multiple Beam Antennas,” IEEE GLOBECOM'05, pp.3196-3200, Dec. 2005 https://doi.org/10.1109/GLOCOM.2005.1578365
  7. A. Ramachandran et al., “Interference-Aware Channel Assignment in Multi-Radio Wireless Mesh Networks,” IEEE INFOCOM'06, pp.1-12, Apr. 2006 https://doi.org/10.1109/INFOCOM.2006.177
  8. A. Raniwala, et. al., “Architecture and Algorithms for an IEEE 802.11-Based Multi-Channel Wireless Mesh Networks,” IEEE INFOCOM'05 pp.2223-2234, Mar. 2005 https://doi.org/10.1109/INFCOM.2005.1498497
  9. Miguel Elias M. Campista, et. al., “Routing Metrics and Protocols for Wireless Mesh Networks,” IEEE Network, pp.6-12, Jan./Feb. 2008 https://doi.org/10.1109/MNET.2008.4435897
  10. M. Pearlman, et. al., “On the impact of alternate path routing for load balancing in mobile adhoc networks,” ACM Mobicom, pp.3-10, Aug. 2000
  11. C-F Huang, et. al., “A two-tier heterogeneous mobile ad hoc network architecture and its load balance routing problem,” IEEE VTC, pp.2163-2167, Oct. 2003 https://doi.org/10.1109/VETECF.2003.1285912
  12. D. Nandiraju, et. al., “Achieving Load Balancing in Wireless Mesh Networks Through Multiple Gateways,” IEEE MASS'06, pp.807-812, Oct. 2006 https://doi.org/10.1109/MOBHOC.2006.278655
  13. K. N. Ramachandran, et. al., “On the design and Implementation of Infrastructure Mesh Networks,” IEEE WiMesh'05, Sep. 2005
  14. Raniwala, A., et. al., “Architecture and Algorithms for an IEEE 802.11-Based Multi-Channel Wireless Mesh Network,” IEEE INFOCOM'05 pp.2223-2234, Mar. 2005 https://doi.org/10.1109/INFCOM.2005.1498497
  15. J. H. Zhao, et. al., “Load-Balancing Strategy of Multi-Gateway for Ad Hoc Internet Connectivity,” IEEE ITSS'05, pp.592-596, Apr. 2005 https://doi.org/10.1109/ITCC.2005.184
  16. C.E. Koksal, et. al., “Quality-Aware Routing Metrics for Time-Varying Wireless Mesh Networks,” IEEE JSAC, vol. 24, no. 11, pp.1984-1994, Nov. 2006 https://doi.org/10.1109/JSAC.2006.881637
  17. S. M. Das, et. al., “Studying Wireless Routing Link Metric Dynamics,” ACM IMC'07, pp.327-332, Oct. 2007 https://doi.org/10.1145/1298306.1298352
  18. W. S. Conner, “IEEE 802.11 TGs usage models”, IEEE P802.11-04/662r16, Jan. 2005
  19. available at http://www.ecsl.cs.sunysb.edu/multichannel/
  20. T. S. Rappaport, “Wireless Communications: Principles and Practice 2nd Ed.,” Prentice Hall, New Jersey, 2002
  21. S. Moon, et. al., “Effective Link Triggers to Improve Handover Performance,” IEEE PIMRC'06, pp.1-5, Sep. 2006 https://doi.org/10.1109/PIMRC.2006.254239