DOI QR코드

DOI QR Code

Implementation of A Low-Power Embedded System via Scratch-pad Memory Compression

스크래치 패드 메모리의 압축을 통한 저전력 임베디드 시스템의 구현

  • 서효중 (가톨릭대학교 컴퓨터정보공학부)
  • Published : 2008.10.31

Abstract

Recently, lots of embedded processors which can run streaming multimedia with high resolution display are introduced. Among the applications running on these embedded processors, real-time audio streaming is one of the applications that suffer from the lack of energy and memory space. In this paper, we propose a novel data compression method on scratch-pad memory, which saves both useful space on the scratch-pad memory and energy. We have implemented the data compression scheme on the GDM1202 real-time audio streaming processor, and the performance results show that we obtained 13.3% energy saving while maintaining comparable application performance to that of the non-compression case.

최근 임베디드 시스템의 고성능화에 따라 고해상도의 디스플레이를 채용하고 대용량 멀티미디어 데이터응용 등 다기능을 갖춘 임베디드 프로세서가 다수 발표되고 있다. 이러한 응용 중 실시간 오디오 스트리밍 같은 시간 제한적 응용을 다루어야 하는 모바일 시스템의 경우, 전력, 메모리 용량등 여러 자원이 부족한 상황에 놓이게 된다. 본 논문은 스크래치 패드 메모리에 대하여 활용도를 높이고 저전력을 구현하기 위하여 압축 기법을 스크래치 패드 메모리의 데이터 영역에 구현하였다. 무선 통신과 실시간 오디오 스트리밍에 사용하는 GDM1202 프로세서에 제안한 방법을 구현하여 측정한 결과, 압축으로 얻어진 스크래치 패드의 영역에 코드와 데이터를 추가하여 할당함으로써 13.3% 에너지 절감을 얻을 수 있었으며, 기존의 방법과 동등한 프로그램 수행 성능을 나타냈다.

Keywords

References

  1. M. Ekman, P. Stenstrom, "A Robust Main-memory Compression Scheme," Int'l Symp. Computer Architecture, pp.74-85, 2005
  2. Y. Yang, R. Gupta, "Frequent-Value Locality and its Applications", ACM Trans. on Embedded Computing Systems, Vol.1, pp.79-105, 2002 https://doi.org/10.1145/581888.581894
  3. W. Wolf, Computers as Components: Principles of Embedded Computing System Design, Morgan Kaufmann Publishers Inc., 2001
  4. M. Farrens, A. Park, "Dynamic Base Register Caching: A technique for Reducing Address Bus Width", Int'l Symp. Computer Architecture, 1991
  5. G. Keramidas, K. Aisopos, S. Kaxiras, "Dynamic Dictionary-Based Data Compression for Level-1 Caches", Lecture Notes in Computer Science, Vol3894/2006, pp.114-129, 2006 https://doi.org/10.1007/11682127_9
  6. F. Douglis, "The Compression Cache: Using On-line Compression to Extend Physical memory" USENIX Conf., pp.519-529, 1993
  7. M. Kjelso, M. Gooch, S. Jones. "Performance Evaluation of Computer Architectures with Main Memory Data Compression", Journal of Systems Architecture. Vol.45, pp.571-590, 1999 https://doi.org/10.1016/S1383-7621(98)00006-X
  8. P. Wilson, S. Kaplan, Y. Smaragdakis, "The Case for Compressed Caching in Virtual Memory Systems", USENIX Ann. Technical Conf., pp.101-116, 1999
  9. R. S. De Castro, A. P. Do Lago, D. da Silva, "Adaptive Compressed Caching: Design and Implementation" Symp. Computer Architecture and High-Performance Computing, pp.10-18, 2003
  10. B. Abali, H. Franke, X. Shen, D. Poff, B. Smith, "Performance of Hardware Compressed Main Memory", Int'l Symp. High-Performance Computer Architecture, pp.73-81, 2001
  11. R.B. Tremaine, P.A. Franaszek, J.T. Robinson, C.O. Schulz, T. B. Smith, M. E. Wazlowski, P.M. Bland, "IBM Memory Expansion Technology (MXT)", IBM Journal Research & Development, Vol.45 No.2, pp.271-285, 2001 https://doi.org/10.1147/rd.452.0271
  12. J.-S. Lee, W.-K. Hong, S.-D. Kim, "Design and Evaluation of a Selective Compressed Memory System," Int'l Conf. Computer Design, pp.184-191, 1999 https://doi.org/10.1109/ICCD.1999.808424
  13. Y. Zhang, J. Yang, and R. Gupta, "Frequent Value Locality and Value-centric Data Cache design", Int'l Conf' Architectural Support for Programming Languages and Operating Systems, pp.150-159, 2000 https://doi.org/10.1145/356989.357003
  14. A.R. Alameldeen, D.A. Wood, "Frequent Pattern Compression: a Significance-based Compression Scheme for L2 Caches", Technical Report 1500, Computer Sciences Dept,, Univ, Wisconsin-Madison, 2004
  15. M. Kjelso, M. Gooch, S. Jones, "Design and Performance of a Main Memory Hardware Data Compressor", EUROMICRO Conf., pp.423-430, 1996
  16. P. R. Panda, N. D. Dutt, A. Nicolau, "Efficient Utilization of Scratch-pad Memory in Embedded Processor Applications", European Design and Test Conf., 1997
  17. M. Kandemir, J. Ramanujam, M.J. Irwin, N. Vijaykrishnan, I. Kadayif, A. Parikh, "Dynamic Management of Scratch-pad Memory Space", Design Automation Conf., pp.690-695, 2001
  18. L. Wang, W. Tembe, S. Pande, "Optimizing On-chip Memory Usage Through Loop Restructuring for Embedded Processors", Int.l Conf. Compiler Construction, pp.141-156, 2000
  19. M. Balakrishnan, P. Marwedel, L. Wehmeyer, N. Grunwald, R. Banakar, S. Steinke, "Reducing Energy Consumption by Dynamic Copying of Instructions onto Onchip Memory", Int'l Symp. System Synthesis, pp.213-218, 2002 https://doi.org/10.1145/581199.581247
  20. O. Ozturk, M. Kandemir, I. Demirkiran, G. Chen, M.J. Irwin, "Data Compression for Improving SPM Behavior", Design Automation Conf. pp.401-406, 2004
  21. GDM1202 Developer's Manual, GCT Semiconductor
  22. Bluetooth Specification 1.2, Bluetooth SIG. Inc
  23. T. A. Welch, "A Technique for High Performance Data Compression," IEEE Computer, Vol.17, No.6, pages 8-19, 1984