References
- 장석원. 암 예방과 치료법. 서울, 비즈북, p 128, 2007
- 이은우, 김영철 역. 머크 매뉴얼. 서울, 한우리, pp 702, 266-267, 2002
- Huerta, S., Goulet, E.J., Livingston, E.H. Colon cancer and apoptosis. Am J Surg 191: 517-526, 2006 https://doi.org/10.1016/j.amjsurg.2005.11.009
- Los, M., Stroh, C., Jänicke, R.U., Engels, I.H., Schulze-Osthoff, K. Caspases: more than just killers? Trends Immunol 22: 31-34, 2001 https://doi.org/10.1016/S1471-4906(00)01814-7
- Huerta, S., Goulet, E.J., Huerta-Yepez, S., Livingston, E.H. Screening and detection of apoptosis. J Surg Res 139: 143-156, 2007 https://doi.org/10.1016/j.jss.2006.07.034
- 윤창렬, 김용진. 난경연구집. 대전, 정담, pp 768, 781-782, 2002
- 경리. 중국고대의방진본비본전집 33권. 전국도서관문헌축미복제중심, p 359, 2004
- 李梴. 醫學入門. 서울, 남산당, pp 212-213, 1980
- 전국한의과대학 폐계내과학교실편저. 동의폐계내과학, 서울, 한문화사, p 87, 526, 2002
- 강락원, 이재훈, 감철우, 최병태, 최영현, 박동일. 길경수용액 추출물에 의한 인체 폐암세포의 성장억제 기전 연구. 동의생리병리학회지 17(1):183-189, 2003
- 이성열, 김원일, 박동일. 길경이 인체 폐암세포에 미치는 영향에 대한 실험적 연구, 동의생리병리학회지 17(4):1019-1030, 2003
- Chen, M., Wang, J. Initiator caspases in apoptosis signaling pathways. Apoptosis 7: 313-319, 2002 https://doi.org/10.1023/A:1016167228059
- Budihardjo, I., Oliver, H., Lutter, M., Luo, X., Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15: 269-290, 1999 https://doi.org/10.1146/annurev.cellbio.15.1.269
- Petak, I., Houghton, J.A. Shared pathways: death receptors and cytotoxic drugs in cancer therapy. Pathol Oncol Res 7: 95-106, 2001 https://doi.org/10.1007/BF03032574
- Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K.J., Debatin, K.M., Krammer, P.H., Peter, M.E. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17: 1675-1687, 1998 https://doi.org/10.1093/emboj/17.6.1675
- Kimberley, F.C., Screaton, G.R. Following a TRAIL: update on a ligand and its five receptors. Cell Res 14: 359-372, 2004 https://doi.org/10.1038/sj.cr.7290236
- LeBlanc, H.N., Ashkenazi, A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10: 66-75, 2003 https://doi.org/10.1038/sj.cdd.4401187
- Wang, S., El-Deiry, W.S. TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22: 8628-8633, 2003 https://doi.org/10.1038/sj.onc.1207232
- Fulda, S., Debatin, K.M. Exploiting death receptor signaling pathways for tumor therapy. Biochim Biophys Acta 1705: 7-41, 2004
- Belka, C., Jendrossek, V., Pruschy, M., Vink, S., Verheij, M., Budach, W. Apoptosis-modulating agents in combination with radiotherapy-current status and outlook. Int J Radiat Oncol Biol Phys 58: 542-554, 2004 https://doi.org/10.1016/j.ijrobp.2003.09.067
- Walczak, H., Miller, R.E., Ariail, K., Gliniak, B., Griffith, T.S., Kubin, M., Chin, W., Jones, J., Woodward, A., Le, T., Smith, C., Smolak, P., Goodwin, R.G., Rauch, C.T., Schuh, J.C., Lynch, D.H. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5: 157-163, 1999 https://doi.org/10.1038/5517
- Ashkenazi, A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2: 420-430, 2002 https://doi.org/10.1038/nrc821
- Timmer, T., de Vries, E.G., de Jong, S. Fas receptor- mediated apoptosis: a clinical application? J Pathol 196: 125-134, 2002 https://doi.org/10.1002/path.1028
- Kischkel, F.C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P.H., Peter, M.E. Cytotoxicity- dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14: 5579-5588, 1995
- Du, J., Chen, G.G., Vlantis, A.C., Chan, P.K., Tsang, R.K., van Hasselt, C.A. Resistance to apoptosis of HPV 16-infected laryngeal cancer cells is associated with decreased Bak and increased Bcl-2 expression. Cancer Lett 5: 1-88, 2004 https://doi.org/10.1016/S0304-3835(78)80002-0
- Reed, J.C. Bcl-2 family proteins. Oncogene 17: 3225-3236, 1998 https://doi.org/10.1038/sj.onc.1202591
- Kroemer, G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 3: 614-620, 1997 https://doi.org/10.1038/nm0697-614
- Donovan, M., Cotter, T.G. Control of mitochondrial integrity by Bcl-2 family members and caspase- independent cell death. Biochim Biophys Acta 1644: 133-147, 2004 https://doi.org/10.1016/j.bbamcr.2003.08.011
- Rosse, T., Olivier, R., Monney, L., Rager, M., Conus, S., Fellay, I., Jansen, B., Borner, C. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391: 496-499, 1998 https://doi.org/10.1038/35160
- Salvesen, G.S., Duckett, C.S. IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 3: 401-410, 2002 https://doi.org/10.1038/nrm830
- Deveraux, Q.L., Reed, J.C. IAP family proteins-suppressors of apoptosis. Genes Dev 13: 239-252, 1999 https://doi.org/10.1101/gad.13.3.239
- Checinska, A., Hoogeland, B.S., Rodriguez, J.A., Giaccone, G., Kruyt, F.A. Role of XIAP in inhibiting cisplatin-induced caspase activation in non-small cell lung cancer cells: a small molecule Smac mimic sensitizes for chemotherapy-induced apoptosis by enhancing caspase-3 activation. Exp Cell Res 313: 1215-1224, 2007 https://doi.org/10.1016/j.yexcr.2006.12.011
- Scott, F.L., Denault, J.B., Riedl, S.J., Shin, H., Renatus, M., Salvesen, G.S. XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J 24: 645-655, 2005 https://doi.org/10.1038/sj.emboj.7600544
- Shiozaki, E.N., Chai, J., Rigotti, D.J., Riedl, S.J., Li, P., Srinivasula, S.M., Alnemri, E.S., Fairman, R., Shi, Y. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11: 519-527, 2003 https://doi.org/10.1016/S1097-2765(03)00054-6
- Chai, J., Shiozaki, E., Srinivasula, S.M., Wu, Q., Datta, P., Alnemri, E.S., Shi, Y. Structural basis of caspase-7 inhibition by XIAP. Cell 104: 769-780, 2001 https://doi.org/10.1016/S0092-8674(01)00272-0
- Huang, Y., Park, Y.C., Rich, R.L., Segal, D., Myszka, D.G., Wu, H. Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104: 781-790, 2001
- Sun, C., Cai, M., Meadows, R.P., Xu, N., Gunasekera, A.H., Herrmann, J., Wu, J.C., Fesik, S.W. NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP. J Biol Chem 275: 33777-33781, 2000 https://doi.org/10.1074/jbc.M006226200
- Deveraux, Q.L., Roy, N., Stennicke, H.R., Van Arsdale, T., Zhou, Q., Srinivasula, S.M., Alnemri, E.S., Salvesen, G.S., Reed, J.C. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 17: 2215-2223, 1998 https://doi.org/10.1093/emboj/17.8.2215
- Roy, N., Deveraux, Q.L., Takahashi, R., Salvesen, G.S., Reed, J.C. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 16: 6914-6925, 1997 https://doi.org/10.1093/emboj/16.23.6914
- Cheng, J.Q., Jiang, X., Fraser, M., Li, M., Dan, H.C., Sun, M., Tsang, B.K. Role of X-linked inhibitor of apoptosis protein in chemoresistance in ovarian cancer: possible involvement of the phosphoinositide-3 kinase/Akt pathway. Drug Resist Updat 5: 131-146, 2002 https://doi.org/10.1016/S1368-7646(02)00003-1
- LaCasse, E.C., Baird, S., Korneluk, R.G., MacKenzie, A.E. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17: 3247-3259, 1998 https://doi.org/10.1038/sj.onc.1202569
- Allen, R.T., Cluck, M.W., Agrawal, D.K. Mechanisms controlling cellular suicide: role of Bcl-2 and caspases. Cell Mol Life Sci 54: 427-445, 1998 https://doi.org/10.1007/s000180050171
- Nagata, S. Apoptosis by death factor. Cell 88: 355-365, 1997 https://doi.org/10.1016/S0092-8674(00)81874-7
- Rao, L., White, E. Bcl-2 and the ICE family of apoptotic regulators: making a connection. Curr Opin Genet Dev 7: 52-58, 1997 https://doi.org/10.1016/S0959-437X(97)80109-8
- Kim, R., Emi, M., Tanabe, K. Caspase-dependent and-independent cell death pathways after DNA damage. Oncol Rep 14: 595-599, 2005.
- Chai, F., Truong-Tran, A.Q., Ho, L.H., Zalewski, P.D. Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc deprivation: A review. Immunol Cell Biol 77: 272-278, 1999 https://doi.org/10.1046/j.1440-1711.1999.00825.x
- Green, D.R., Reed, J.C. Mitochondra and apoptosis. Science 281: 1309-1312, 1998 https://doi.org/10.1126/science.281.5381.1309
- Vegran, F., Boidot, R., Oudin, C., Riedinger, J.M., Lizard- Nacol, S. Implication of alternative splice transcripts of caspase-3 and survivin in chemoresistance. Bull Cancer 92: 219-226, 2005
- Du, C., Fang, M., Li, Y., Li, L., Wang, X., Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33-42, 2000 https://doi.org/10.1016/S0092-8674(00)00008-8
- de Murcia, G., Ménissier de Murcia, J. Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci 19: 172-176, 1994 https://doi.org/10.1016/0968-0004(94)90280-1
- Muller, S., Briand, J.P., Barakat, S., Lagueux, J., Poirier, G.G., De Murcia, G., Isenberg, D.A. Autoantibodies reacting with poly(ADP-ribose) and with a zinc-finger functional domain of poly(ADP-ribose) polymerase involved in the recognition of damaged DNA. Clin Immunol Immunopathol 73: 187-196, 1994 https://doi.org/10.1006/clin.1994.1187
-
Tewari, M., Quan, L.T., O'Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D.R., Poirier, G.G., Salvesen, G.S., Dixit, V.M. Yama/CPP32
$\beta$ , a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81: 801-809, 1995 https://doi.org/10.1016/0092-8674(95)90541-3 - Los, M., Wesselborg, S., Schulze-Osthoff, K. The role of caspases in development, immunity, and apoptotic signal transduction: lessons from knockout mice. Immunity 10: 629-639, 1999 https://doi.org/10.1016/S1074-7613(00)80062-X
- Lazebnik, Y.A., Kaufmann, S.H., Desnoyers, S., Poirier, G.G., Earnshaw, W.C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371: 346-347, 1994 https://doi.org/10.1038/371346a0
- Kaufmann, S.H., Desnoyers, S., Ottaviano, Y., Davidson, N.E., Poirier, G.G. Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53: 3976-3985, 1993
-
Olmeda, D., Castel, S., Vilaró, S., Cano, A.
$\beta$ -catenin regulation during the cell cycle: implications in G2/M and apoptosis. Mol Biol Cell 14: 2844-2860, 2003 https://doi.org/10.1091/mbc.E03-01-0865 - Wijnhoven, B.P., Dinjens, W.N., Pignatelli, M. E-cadherin- catenin cell-cell adhesion complex and human cancer. Br J Surg 87: 992-1005, 2000 https://doi.org/10.1046/j.1365-2168.2000.01513.x
- Johnson, J.P. Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastasis Rev 18: 345-357, 1999 https://doi.org/10.1023/A:1006304806799
- Polakis, P. More than one way to skin a catenin. Cell 105: 563-566, 2001 https://doi.org/10.1016/S0092-8674(01)00379-8
- Neufeld, K.L., Zhang, F., Cullen, B.R., White, R.L. APC-mediated downregulation of beta-catenin activity involves nuclear sequestration and nuclear export. EMBO Rep 1: 519-523, 2000 https://doi.org/10.1093/embo-reports/kvd117
- Henderson, B.R. Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nat Cell Biol 2: 653-660, 2000 https://doi.org/10.1038/35023605
-
Fukuda, K. Apoptosis-associated cleavage of
$\beta$ -catenin in human colon cancer and rat hepatoma cells. Int J Biochem Cell Biol. 31: 519-529, 1999 https://doi.org/10.1016/S1357-2725(98)00119-8 -
Kim, M.J., Kim, E., Ryu, S.H., Suh, P.G. The mechanism of phospholipase C-
$\gamma$ 1 regulation. Exp Mol Med 32: 101-109, 2000 https://doi.org/10.1038/emm.2000.18 - Rhee, S.G., Bae, Y.S. Regulation of phosphoinositide-specific phospholipase C isozymes. J Biol Chem 272: 15045-15048, 1997 https://doi.org/10.1074/jbc.272.24.15045
-
Kamat, A., Carpenter, G. Phospholipase C-
$\gamma$ 1: regulation of enzyme function and role in growth factor-dependent signal transduction. Cytokine Growth Factor Rev 8: 109-117, 1997 https://doi.org/10.1016/S1359-6101(97)00003-8 - Myklebust, J.H., Blomhoff, H.K., Rusten, L.S., Stokke, T., Smeland, E.B. Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34(+) hematopoietic progenitor cells. Exp Hematol 30: 990-1000, 2002 https://doi.org/10.1016/S0301-472X(02)00868-8
-
Bae, S.S., Perry, D.K., Oh, Y.S., Choi, J.H., Galadari, S.H., Ghayur, T., Ryu, S.H., Hannun, Y.A., Suh, P.G. Proteolytic cleavage of phospholipase C-
$\gamma$ 1 during apoptosis in Molt-4 cells. FASEB J 14: 1083-1092, 2000 https://doi.org/10.1096/fasebj.14.9.1083 - Nishizuka, Y., Kikkawa, U. Early studies of protein kinase C: a historical perspective. Methods Mol Biol 233: 9-18, 2003
- Berridge, M.J., Irvine, R.F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315-321, 1984 https://doi.org/10.1038/312315a0
- Widlak, P., Garrard, W.T. Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G. J Cell Biochem. 94: 1078-1087, 2005 https://doi.org/10.1002/jcb.20409
- Widlak, P. The DFF40/CAD endonuclease and its role in apoptosis. Acta Biochim Pol. 47: 1037-1044, 2000
- Nagata, S. Apoptotic DNA fragmentation. Exp Cell Res. 256: 12-18, 2000 https://doi.org/10.1006/excr.2000.4834