Induction of Apoptosis by Gamisamgibopae-tang in A549 Human Lung Cancer Cells through Modulation of Bcl-2 Family and Activation of Caspases

Bcl-2 family 발현 변화 및 caspases의 활성을 통한 가미삼기보폐탕의 A549 인체폐암세포 apoptosis 유도

  • Kim, Hyun-Joong (Department of Oriental Medicine, Graduate School Dong-Eui University) ;
  • Kim, Hong-Gi (Department of Oriental Medicine, Graduate School Dong-Eui University) ;
  • Kim, Jin-Young (Department of Oriental Medicine, Graduate School Dong-Eui University) ;
  • Kam, Cheol-Woo (Department of Oriental Medicine, Graduate School Dong-Eui University) ;
  • Park, Dong-Il (Department of Oriental Medicine, Graduate School Dong-Eui University)
  • 김현중 (동의대학교 한의과대학 한의학과) ;
  • 김홍기 (동의대학교 한의과대학 한의학과) ;
  • 김진영 (동의대학교 한의과대학 한의학과) ;
  • 감철우 (동의대학교 한의과대학 한의학과) ;
  • 박동일 (동의대학교 한의과대학 한의학과)
  • Published : 2008.06.25

Abstract

Gamisamgibopae-tang (GMSGBPT) is a traditional Korean medicine, which has been used for patients suffering from a lung disease in Oriental medicine. In the present study, we examined the biochemical mechanisms of apoptosis by GMSGBPT in NCI-H460 and A549 human non-small-cell lung cancer cell lines. It was found that GMSGBPT could inhibit the cell proliferation of A549 cells in a concentration-dependent manner, however GMSGBPT did not affect the cell proliferation of NCI-H460 cells. Apoptotic cell death in A549 cells were detected using DAPI staining and annexin V fluorescein methods. The induction of apoptotic cell death by GMSGBPT was connected with a down-regulation of anti-apoptotic Bcl-2 and Bcl-xL expression, and proteolytic activation of caspase-3 and caspase-9 in A549 cells. However, GMSGBPT did not affect the levels of pro-apoptotic Bax and Bad expression, and activity of caspase-8. GMSGBPT treatment also concomitant degradation and/or inhibition of poly (ADP-ribose) polymerase (PARP), ${\beta}$-catenin, phospholipase C-1 (PLC${\gamma}$1) and DNA fragmentation factor 45/inhibitor of caspase-activated DNase (DFF45/ICAD). Taken together, these findings suggest that GMSGBPT may be a potential chemotherapeutic agent for the control of human non-small-cell lung cancer cells and further studies will be needed to identify the active compounds that confer the anti-cancer activity of GMSGBPT.

Keywords

References

  1. 장석원. 암 예방과 치료법. 서울, 비즈북, p 128, 2007
  2. 이은우, 김영철 역. 머크 매뉴얼. 서울, 한우리, pp 702, 266-267, 2002
  3. Huerta, S., Goulet, E.J., Livingston, E.H. Colon cancer and apoptosis. Am J Surg 191: 517-526, 2006 https://doi.org/10.1016/j.amjsurg.2005.11.009
  4. Los, M., Stroh, C., Jänicke, R.U., Engels, I.H., Schulze-Osthoff, K. Caspases: more than just killers? Trends Immunol 22: 31-34, 2001 https://doi.org/10.1016/S1471-4906(00)01814-7
  5. Huerta, S., Goulet, E.J., Huerta-Yepez, S., Livingston, E.H. Screening and detection of apoptosis. J Surg Res 139: 143-156, 2007 https://doi.org/10.1016/j.jss.2006.07.034
  6. 윤창렬, 김용진. 난경연구집. 대전, 정담, pp 768, 781-782, 2002
  7. 경리. 중국고대의방진본비본전집 33권. 전국도서관문헌축미복제중심, p 359, 2004
  8. 李梴. 醫學入門. 서울, 남산당, pp 212-213, 1980
  9. 전국한의과대학 폐계내과학교실편저. 동의폐계내과학, 서울, 한문화사, p 87, 526, 2002
  10. 강락원, 이재훈, 감철우, 최병태, 최영현, 박동일. 길경수용액 추출물에 의한 인체 폐암세포의 성장억제 기전 연구. 동의생리병리학회지 17(1):183-189, 2003
  11. 이성열, 김원일, 박동일. 길경이 인체 폐암세포에 미치는 영향에 대한 실험적 연구, 동의생리병리학회지 17(4):1019-1030, 2003
  12. Chen, M., Wang, J. Initiator caspases in apoptosis signaling pathways. Apoptosis 7: 313-319, 2002 https://doi.org/10.1023/A:1016167228059
  13. Budihardjo, I., Oliver, H., Lutter, M., Luo, X., Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15: 269-290, 1999 https://doi.org/10.1146/annurev.cellbio.15.1.269
  14. Petak, I., Houghton, J.A. Shared pathways: death receptors and cytotoxic drugs in cancer therapy. Pathol Oncol Res 7: 95-106, 2001 https://doi.org/10.1007/BF03032574
  15. Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K.J., Debatin, K.M., Krammer, P.H., Peter, M.E. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17: 1675-1687, 1998 https://doi.org/10.1093/emboj/17.6.1675
  16. Kimberley, F.C., Screaton, G.R. Following a TRAIL: update on a ligand and its five receptors. Cell Res 14: 359-372, 2004 https://doi.org/10.1038/sj.cr.7290236
  17. LeBlanc, H.N., Ashkenazi, A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10: 66-75, 2003 https://doi.org/10.1038/sj.cdd.4401187
  18. Wang, S., El-Deiry, W.S. TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22: 8628-8633, 2003 https://doi.org/10.1038/sj.onc.1207232
  19. Fulda, S., Debatin, K.M. Exploiting death receptor signaling pathways for tumor therapy. Biochim Biophys Acta 1705: 7-41, 2004
  20. Belka, C., Jendrossek, V., Pruschy, M., Vink, S., Verheij, M., Budach, W. Apoptosis-modulating agents in combination with radiotherapy-current status and outlook. Int J Radiat Oncol Biol Phys 58: 542-554, 2004 https://doi.org/10.1016/j.ijrobp.2003.09.067
  21. Walczak, H., Miller, R.E., Ariail, K., Gliniak, B., Griffith, T.S., Kubin, M., Chin, W., Jones, J., Woodward, A., Le, T., Smith, C., Smolak, P., Goodwin, R.G., Rauch, C.T., Schuh, J.C., Lynch, D.H. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5: 157-163, 1999 https://doi.org/10.1038/5517
  22. Ashkenazi, A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2: 420-430, 2002 https://doi.org/10.1038/nrc821
  23. Timmer, T., de Vries, E.G., de Jong, S. Fas receptor- mediated apoptosis: a clinical application? J Pathol 196: 125-134, 2002 https://doi.org/10.1002/path.1028
  24. Kischkel, F.C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P.H., Peter, M.E. Cytotoxicity- dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14: 5579-5588, 1995
  25. Du, J., Chen, G.G., Vlantis, A.C., Chan, P.K., Tsang, R.K., van Hasselt, C.A. Resistance to apoptosis of HPV 16-infected laryngeal cancer cells is associated with decreased Bak and increased Bcl-2 expression. Cancer Lett 5: 1-88, 2004 https://doi.org/10.1016/S0304-3835(78)80002-0
  26. Reed, J.C. Bcl-2 family proteins. Oncogene 17: 3225-3236, 1998 https://doi.org/10.1038/sj.onc.1202591
  27. Kroemer, G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 3: 614-620, 1997 https://doi.org/10.1038/nm0697-614
  28. Donovan, M., Cotter, T.G. Control of mitochondrial integrity by Bcl-2 family members and caspase- independent cell death. Biochim Biophys Acta 1644: 133-147, 2004 https://doi.org/10.1016/j.bbamcr.2003.08.011
  29. Rosse, T., Olivier, R., Monney, L., Rager, M., Conus, S., Fellay, I., Jansen, B., Borner, C. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391: 496-499, 1998 https://doi.org/10.1038/35160
  30. Salvesen, G.S., Duckett, C.S. IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 3: 401-410, 2002 https://doi.org/10.1038/nrm830
  31. Deveraux, Q.L., Reed, J.C. IAP family proteins-suppressors of apoptosis. Genes Dev 13: 239-252, 1999 https://doi.org/10.1101/gad.13.3.239
  32. Checinska, A., Hoogeland, B.S., Rodriguez, J.A., Giaccone, G., Kruyt, F.A. Role of XIAP in inhibiting cisplatin-induced caspase activation in non-small cell lung cancer cells: a small molecule Smac mimic sensitizes for chemotherapy-induced apoptosis by enhancing caspase-3 activation. Exp Cell Res 313: 1215-1224, 2007 https://doi.org/10.1016/j.yexcr.2006.12.011
  33. Scott, F.L., Denault, J.B., Riedl, S.J., Shin, H., Renatus, M., Salvesen, G.S. XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J 24: 645-655, 2005 https://doi.org/10.1038/sj.emboj.7600544
  34. Shiozaki, E.N., Chai, J., Rigotti, D.J., Riedl, S.J., Li, P., Srinivasula, S.M., Alnemri, E.S., Fairman, R., Shi, Y. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11: 519-527, 2003 https://doi.org/10.1016/S1097-2765(03)00054-6
  35. Chai, J., Shiozaki, E., Srinivasula, S.M., Wu, Q., Datta, P., Alnemri, E.S., Shi, Y. Structural basis of caspase-7 inhibition by XIAP. Cell 104: 769-780, 2001 https://doi.org/10.1016/S0092-8674(01)00272-0
  36. Huang, Y., Park, Y.C., Rich, R.L., Segal, D., Myszka, D.G., Wu, H. Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell 104: 781-790, 2001
  37. Sun, C., Cai, M., Meadows, R.P., Xu, N., Gunasekera, A.H., Herrmann, J., Wu, J.C., Fesik, S.W. NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP. J Biol Chem 275: 33777-33781, 2000 https://doi.org/10.1074/jbc.M006226200
  38. Deveraux, Q.L., Roy, N., Stennicke, H.R., Van Arsdale, T., Zhou, Q., Srinivasula, S.M., Alnemri, E.S., Salvesen, G.S., Reed, J.C. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 17: 2215-2223, 1998 https://doi.org/10.1093/emboj/17.8.2215
  39. Roy, N., Deveraux, Q.L., Takahashi, R., Salvesen, G.S., Reed, J.C. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 16: 6914-6925, 1997 https://doi.org/10.1093/emboj/16.23.6914
  40. Cheng, J.Q., Jiang, X., Fraser, M., Li, M., Dan, H.C., Sun, M., Tsang, B.K. Role of X-linked inhibitor of apoptosis protein in chemoresistance in ovarian cancer: possible involvement of the phosphoinositide-3 kinase/Akt pathway. Drug Resist Updat 5: 131-146, 2002 https://doi.org/10.1016/S1368-7646(02)00003-1
  41. LaCasse, E.C., Baird, S., Korneluk, R.G., MacKenzie, A.E. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17: 3247-3259, 1998 https://doi.org/10.1038/sj.onc.1202569
  42. Allen, R.T., Cluck, M.W., Agrawal, D.K. Mechanisms controlling cellular suicide: role of Bcl-2 and caspases. Cell Mol Life Sci 54: 427-445, 1998 https://doi.org/10.1007/s000180050171
  43. Nagata, S. Apoptosis by death factor. Cell 88: 355-365, 1997 https://doi.org/10.1016/S0092-8674(00)81874-7
  44. Rao, L., White, E. Bcl-2 and the ICE family of apoptotic regulators: making a connection. Curr Opin Genet Dev 7: 52-58, 1997 https://doi.org/10.1016/S0959-437X(97)80109-8
  45. Kim, R., Emi, M., Tanabe, K. Caspase-dependent and-independent cell death pathways after DNA damage. Oncol Rep 14: 595-599, 2005.
  46. Chai, F., Truong-Tran, A.Q., Ho, L.H., Zalewski, P.D. Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc deprivation: A review. Immunol Cell Biol 77: 272-278, 1999 https://doi.org/10.1046/j.1440-1711.1999.00825.x
  47. Green, D.R., Reed, J.C. Mitochondra and apoptosis. Science 281: 1309-1312, 1998 https://doi.org/10.1126/science.281.5381.1309
  48. Vegran, F., Boidot, R., Oudin, C., Riedinger, J.M., Lizard- Nacol, S. Implication of alternative splice transcripts of caspase-3 and survivin in chemoresistance. Bull Cancer 92: 219-226, 2005
  49. Du, C., Fang, M., Li, Y., Li, L., Wang, X., Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33-42, 2000 https://doi.org/10.1016/S0092-8674(00)00008-8
  50. de Murcia, G., Ménissier de Murcia, J. Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci 19: 172-176, 1994 https://doi.org/10.1016/0968-0004(94)90280-1
  51. Muller, S., Briand, J.P., Barakat, S., Lagueux, J., Poirier, G.G., De Murcia, G., Isenberg, D.A. Autoantibodies reacting with poly(ADP-ribose) and with a zinc-finger functional domain of poly(ADP-ribose) polymerase involved in the recognition of damaged DNA. Clin Immunol Immunopathol 73: 187-196, 1994 https://doi.org/10.1006/clin.1994.1187
  52. Tewari, M., Quan, L.T., O'Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D.R., Poirier, G.G., Salvesen, G.S., Dixit, V.M. Yama/CPP32 $\beta$, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81: 801-809, 1995 https://doi.org/10.1016/0092-8674(95)90541-3
  53. Los, M., Wesselborg, S., Schulze-Osthoff, K. The role of caspases in development, immunity, and apoptotic signal transduction: lessons from knockout mice. Immunity 10: 629-639, 1999 https://doi.org/10.1016/S1074-7613(00)80062-X
  54. Lazebnik, Y.A., Kaufmann, S.H., Desnoyers, S., Poirier, G.G., Earnshaw, W.C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371: 346-347, 1994 https://doi.org/10.1038/371346a0
  55. Kaufmann, S.H., Desnoyers, S., Ottaviano, Y., Davidson, N.E., Poirier, G.G. Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53: 3976-3985, 1993
  56. Olmeda, D., Castel, S., Vilaró, S., Cano, A. $\beta$-catenin regulation during the cell cycle: implications in G2/M and apoptosis. Mol Biol Cell 14: 2844-2860, 2003 https://doi.org/10.1091/mbc.E03-01-0865
  57. Wijnhoven, B.P., Dinjens, W.N., Pignatelli, M. E-cadherin- catenin cell-cell adhesion complex and human cancer. Br J Surg 87: 992-1005, 2000 https://doi.org/10.1046/j.1365-2168.2000.01513.x
  58. Johnson, J.P. Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastasis Rev 18: 345-357, 1999 https://doi.org/10.1023/A:1006304806799
  59. Polakis, P. More than one way to skin a catenin. Cell 105: 563-566, 2001 https://doi.org/10.1016/S0092-8674(01)00379-8
  60. Neufeld, K.L., Zhang, F., Cullen, B.R., White, R.L. APC-mediated downregulation of beta-catenin activity involves nuclear sequestration and nuclear export. EMBO Rep 1: 519-523, 2000 https://doi.org/10.1093/embo-reports/kvd117
  61. Henderson, B.R. Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nat Cell Biol 2: 653-660, 2000 https://doi.org/10.1038/35023605
  62. Fukuda, K. Apoptosis-associated cleavage of $\beta$-catenin in human colon cancer and rat hepatoma cells. Int J Biochem Cell Biol. 31: 519-529, 1999 https://doi.org/10.1016/S1357-2725(98)00119-8
  63. Kim, M.J., Kim, E., Ryu, S.H., Suh, P.G. The mechanism of phospholipase C-$\gamma$1 regulation. Exp Mol Med 32: 101-109, 2000 https://doi.org/10.1038/emm.2000.18
  64. Rhee, S.G., Bae, Y.S. Regulation of phosphoinositide-specific phospholipase C isozymes. J Biol Chem 272: 15045-15048, 1997 https://doi.org/10.1074/jbc.272.24.15045
  65. Kamat, A., Carpenter, G. Phospholipase C-$\gamma$1: regulation of enzyme function and role in growth factor-dependent signal transduction. Cytokine Growth Factor Rev 8: 109-117, 1997 https://doi.org/10.1016/S1359-6101(97)00003-8
  66. Myklebust, J.H., Blomhoff, H.K., Rusten, L.S., Stokke, T., Smeland, E.B. Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34(+) hematopoietic progenitor cells. Exp Hematol 30: 990-1000, 2002 https://doi.org/10.1016/S0301-472X(02)00868-8
  67. Bae, S.S., Perry, D.K., Oh, Y.S., Choi, J.H., Galadari, S.H., Ghayur, T., Ryu, S.H., Hannun, Y.A., Suh, P.G. Proteolytic cleavage of phospholipase C-$\gamma$1 during apoptosis in Molt-4 cells. FASEB J 14: 1083-1092, 2000 https://doi.org/10.1096/fasebj.14.9.1083
  68. Nishizuka, Y., Kikkawa, U. Early studies of protein kinase C: a historical perspective. Methods Mol Biol 233: 9-18, 2003
  69. Berridge, M.J., Irvine, R.F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315-321, 1984 https://doi.org/10.1038/312315a0
  70. Widlak, P., Garrard, W.T. Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G. J Cell Biochem. 94: 1078-1087, 2005 https://doi.org/10.1002/jcb.20409
  71. Widlak, P. The DFF40/CAD endonuclease and its role in apoptosis. Acta Biochim Pol. 47: 1037-1044, 2000
  72. Nagata, S. Apoptotic DNA fragmentation. Exp Cell Res. 256: 12-18, 2000 https://doi.org/10.1006/excr.2000.4834